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1.- INTRODUCTION. 
 
The objective is to show different methods of analysis to estimate the conditional probability of 
failure by sliding along the dam-foundation contact on a concrete gravity dam. These methods 
can be classified as Level 1, Level 2 and Level 3 methods. 
 
If our project variables (X1,X2,...,Xn) are considered as random variables, it is possible to define 
the strength function r(x1,x2,...,xn) and the load function s(x1, x2,...,xn) and write the limit state 
equation as follows: 
 

( ) ( ) ( )
( ) 01

x,...,x,xs
x,...,x,xr

1x,...,x,xgx,...,x,xg
n21

n21
n21n21

* =−=−=  (Eq. 1) 

 
According to this, the failure domain in the n-dimensional space is defined as all the possible 
values (x1,x2,...,xn) that verify the condition: 
 

( ) 0x,...,x,xg n21
* ≤  (Eq. 2) 

 
and the safety domain is defined as all possible values (x1,x2,...,xn) that verify the condition: 
 

( ) 0x,...,x,xg n21
* >  (Eq. 3) 

 
According to the concept of the probability density function, the probability of a single n-
dimensional point (x1,x2,...,xn) to be in the failure domain defined by g*(x1,x2,...,xn), is 
calculated as the integral over the failure domain of the joint probability density function of all 
random variables: 
 

( )[ ] ∫
≤

=≤
0xxxg

n21n21XXXn21f
n21

n21
dxdxdxxxxf0xxxgP

),...,,(*
,...,,

* ...),...,,(,...,,  (Eq. 4) 

 
As long as the joint probability density function and the integration domain are defined with 
precision, and the integral can be calculated, Equation (4) provides a value for probability that is 
mathematically exact. 
 
The methods for failure probability estimation can be grouped in different levels (Mínguez [1]): 
 

Level 1: Method of safety factors. Does not provide probability of failure. Uncertainty is 
measured by arbitrary factors. 

 
Level 2: Second Moment Methods. The probability of failure can be obtained under some 
assumptions. Only the first two moments (mean and standard deviation) of the joint 
probability density function fX1,X2,...,Xn(x1,x2,...,xn) are used. Eventually, also the failure 
domain g*(x1,x2,...,xn) is approximated. 

 
Level 3: Exact Methods. These methods provide the probability of failure, as they work 
with all the information of the joint probability density function. Integration is carried out 
by means of specific methods. 
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Table 1. Levels of reliability analysis. 

LEVEL Method of 
calculation 

Probability 
distributions 

Limit state 
equations 

Treatment of 
uncertainty Output 

Level 1 
Code calibration with 

level 2 or level 3 
methods 

Not used Linear Arbitrary factors Coefficients 

Level 2 Second order algebra Normal 
distributions only 

Linear or aprox. 
Linear 

Can be included as 
normal distribution 

Probability of 
failure 

Transformations Equivalent normal 
distributions 

Linear or aprox. 
Linear Can be included 

Level 3 
Numerical 

integration and 
simulation 

Any distribution Any form Random variables 

Probability of 
failure 

 
 
2.- CASE STUDY. 
 
Dam geometry is depicted in Figure 1 and in Table 2. 
 

 
Figure 1. Dam geometry. 

 
 

Table 2. Dam geometry. 
Geometry Values 
Height (m) 100 

Base width (m) 75 
Upstream slope Vertical 

Downstream slope (H:V) 0.75 
 
Properties of concrete and rock materials are given in Table 3. 
 



Assessment of the sliding probability of failure of a concrete gravity dam 
2nd International week on risk analysis  
as applied to dam safety and dam security   26-29th February 2008 Valencia. Spain.  

 www.ipresas.upv.es 7/30 

 
Table 3. Concrete and rock properties. 

Material properties Concrete Rock 
Mass density (kg/m3) 2300 2600 

Compressive strength (Pa) 200 × 105 300 × 105 
Tensile strength (Pa) 20× 105 25 × 105 

 
Properties of the dam-foundation contact are given in Table 4. 
 

Table 4. Properties of the dam-foundation contact. 
Material properties Values 
Peak Cohesion (Pa) 5 × 105 

Residual Cohesion (Pa) 0 
Peak Friction Angle (º) 45 

Residual Friction Angle (º) 35 
Tensile strength (Pa) 4 × 105 

 
Data of water pressures are given in Table 5. 
 

Table 5. Data of water pressures. 
Data of water pressures Values 

Density of water, ρw (kg/m3) 1000 
Water level upstream, h (m) 90 
Water level downstream (m) 0 
Drainage system efficiency 0 

 
Gravity acceleration is taken as g = 10 m/s2. 
 
 
3.- MATHEMATICAL MODEL OF ANALYSIS. 
 
Sliding stability can be analysed by means of a simple two-dimensional limit equilibrium 
model. 
 
Hydrostatic load, S (N/m), is the driving force and can be evaluated by (5). 
 

2

2
1 ghS wρ=

 
(Eq. 5) 

 
Shear strength, R(N/m) is calculated with (6). 
 

cBtgUNR ×+−= ϕ)(  (Eq. 6) 
 
N (N/m) is the sum of vertical forces acting on the dam-foundation contact surface. 
U (N/m) is the uplift. 
B (m2/m) is the area in compression in the dam-foundation contact. 
ϕ (º) is the friction angle in the contact. 
c (Pa) is the cohesion in the contact. 
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4.- LEVEL 1 METHODS. GLOBAL SAFETY FACTOR 
 
4.1.- THEORETICAL BASIS. 
 
This is the classical approach in structural safety assessment. All the variables of a certain 
problem (geometry, material properties, loads,...) form a vector (X1,X2,...,Xn) in a n-dimensional 
space, and if we define a strength function r(x1,x2,...,xn) and a loading function s(x1,x2,...,xn), it is 
possible to derive a function g(x1,x2,...,xn) as: 
 

)x,...,x,x(s
)x,...,x,x(r

)x,...,x,x(g
n21

n21
n21 =  (Eq. 7) 

 
Any point (x1,x2,...,xn) in the n-dimensional space is in the safety domain if: 
 

1)x,...,x,x(g n21 >  (Eq. 8) 
 
On the other hand, it is in the failure domain if: 
 

1)x,...,x,x(g n21 ≤  (Eq. 9) 
 
The frontier between these two domains, or limit state region, is defined by the n-dimensional 
hyper surface defined by: 
 

1)x,...,x,x(g n21 =  (Eq. 10) 
 

Variable X1

V
ar

ia
bl

e 
X2

REGIÓN DE FALLO
g(x1,x2)<1

REGIÓN SEGURA
g(x1,x2)>1

ESTADO LÍMITE
g(x1,x2)=1

 
Figure 2: Safety and failure domains and limit state in a two-dimensional case. 

 
The global safety factor, F (F>1), is defined as: 
 

0F)x,...,x,x(g n21 >−  (Eq. 11) 
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Or, in the most common expression: 
 

F
)x,...,x,x(s
)x,...,x,x(r

n21

n21 >  (Eq. 12) 

 
This method is used in common practice with constant values for the variables (X1,X2,..., Xn), 
so-called representative values. 
 

Variable X1

V
ar

ia
bl

e 
X2

REGIÓN DE FALLO
g(x1,x2)<1

REGIÓN SEGURA
g(x1,x2)>1

ESTADO LÍMITE
g(x1,x2)=1

g(x1,x2)=F

COEFICIENTE DE 
SEGURIDAD

 
Figure 3. Safety margin expressed in terms of safety factor. 

 
 
4.2.- APPLICATION TO THE CASE STUDY. 
 
Evaluating the forces acting on the dam: 
 

72 1005.490101000
2
1

×=××=S (N/m) (Eq. 13) 

 

(N/m)1000.9)))10575(45)10100090755.0((

)102300100755.0((
75 ×=××+××××

−××××=

tg

R
 (Eq. 14) 

 
And the global safety factor obtained is: 
 

22.2
1005.4
1000.9

7

7

=
×
×

==
S
RFS

 
(Eq. 15) 

 
 
5.- LEVEL 1 METHODS. PARTIAL SAFETY FACTORS 
 
5.1.- THEORETICAL BASIS. 
 
In this methodology different safety factors are associated with different variables. This method 
is common practice in the reinforced concrete and steel structures analysis. 
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Two groups of coefficients are defined, a group γi (γi <1) associated with strength variables, Ri, 
and a group λj (λj > 1) associated to loadings, Sj, so (Eq. 12) can be re-written as: 
 

∑∑ >
j

jj
i

ii SλRγ  (Eq. 16) 

 
This methodology allows “weighting” of the different variables depending upon the 
uncertainties associated to the representative values adopted. Coefficients associated to strength 
variables decrease their values with respect to their representative ones and coefficients 
associated to loading variables increase their values with respect to their representative values. 
 
 
5.2.- APPLICATION TO THE CASE STUDY. 
 
It is possible to evaluate the sliding safety of a gravity dam with partial safety factors, as the 
Spanish recommendations for dam calculation state (Technical Guide nº2 Criteria for dam 
project).  
 
Partial safety factors are assigned to shear strengths (friction and cohesion in the dam-
foundation contact) The values for these factors are different depending upon the kind of 
evaluation being carried out: normal, abnormal or extreme. They also vary depending on the 
dam classification. 
 
In this case assumption of an abnormal situation is reasonable, as the drainage system is 
supposed to be ineffective. Dam classification according to Spanish standards is A.  
 
Friction strength, R1, cohesion strength, R2, and loading, S1, can be calculated: 
 

N/m 1025.545)10375.31023003750( )( 77
1 ×=×−××=−⋅= tgtgUgAR c φρ  (Eq. 17) 

N/m 1075.31000.575 75
2 ×=××=⋅= cBR  (Eq. 18) 

N/m 7e05.4901010005.0hgρ5.0S 22
w1 =×××=⋅⋅=  (Eq. 19) 

 
and equation (16) can be written as: 
 

112211 SλRγRγ >+  (Eq. 20) 
 
According to Spanish recommendations, partial safety factors for abnormal situation and A 
category dam are: 
 
Friction, γ1 = 1/1.2 = 0.833 
Cohesion, γ2 = 1/4 = 0.25 
 
Cohesion decrease is larger than friction decrease. Recommendations do not assign any 
loading increase, so λ = 1. Substituting in (20) the sliding safety can be checked:: 
 

7777 1005.411031.51075.325.01025.5833.0 ××>×=××+××  (Eq. 21) 
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6.- LEVEL 2 METHODS. THEORETICAL BASIS. 
 
Level 2 methods make a linear (first order) approximation of the function g*(x1,x2,...,xn). In 
addition, only the first two moments (second moment) of the joint probability density function 
distribution are considered, so these methods are called FOSM Methods (First Order Second 
Moment). 
 
The typical output of these methods is the reliability index, β, which is defined as the number of 
standard deviations between the expected value of the function g*(x1,x2,...,xn) and the limit state 
value defined as g*(x1,x2,...,xn)=0. This value gives us a relative measure of reliability (distance 
between the most probable value and the failure domain, in the sense that the larger the value of 
β, the safer the structure will be, but it does not tells us anything about the probability of failure 
by itself. 
 

[ ] ( ) [ ] [ ]
***

****

ggg

fallo

σ
gE

σ
0gE

σ
ggE

β =
−

=
−

=  (Eq. 22) 

 
As X1,X2,...,Xn are random variables, g*(x1,x2,...,xn) is a random variable with a certain 
probability distribution, usually unknown. To get an estimate of the probability of failure, and 
hypothesis on the shape of this distribution is to be done. With the shape of the probability 
distribution and its first two moments, both the reliability index and the probability of failure 
can be obtained. 
 
There are different techniques to deal with the problem: 
 

• Taylor’s Series Method 
• Rosenblueth’s Point Estimate Method 
• Hasofer & Lind Method 

 
 
7.- LEVEL 2 METHODS. FOSM – TAYLOR’S SERIES. 
 
7.1.- THEORETICAL BASIS. 
 
The function g*(x1,x2,...,xn) must be linear to obtain the first two moments of the probability 
distribution of g*(x1,x2,...,xn) from the first two moments of the probability distributions of the 
random variables X1,X2,...,Xn: 
 

( ) nn22110n21 xaxaxaaxxxg ++++= ...,...,,*  (Eq. 23) 
 
The first moment of the probability distribution of g*, assuming that the random variables are 
correlated can be calculated as: 
 

[ ] [ ] [ ] [ ]( ) ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

+=
jiji XXXX

ji

2

n21 σσρ
XX

g
2
1XEXEXEggE *,...,,**  (Eq. 24) 

 
where σXi is the standard deviation of the random variable Xi and ρXiXj is the correlation 
coefficient between random variables Xi y Xj. 
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Being a first order approximation, second order derivatives can be ignored, so the final 
expression is the same for correlated and independent random variables: 
 

[ ] [ ] [ ] [ ]( )n21 XEXEXEggE ,...,,** =  (Eq. 25) 
 
So the expected value of g* is obtained evaluating the function in the n-dimensional point 
corresponding to the expected values of the random variables. The variance of the probability 
distribution of g*, assuming correlated random variables, is calculated as: 
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≠
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⎛

∂
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⎟

⎠
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⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
ji

XXXX
jii

2
X

2

i
jijii

σσρ
X
g

X
g2σ

X
ggVar ****  (Eq. 26) 

 
where σ2

Xi is the variance of the random variable Xi. 
 
If the random variables are independent, equation (26) can be written as: 
 

[ ] ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
i

2
X

2

i i
σ

X
ggVar **  (Eq. 27) 

 
First order derivatives can be obtained straightforward if g* is a linear function. If it is not, first 
order derivatives are approximated by the first order elements of the Taylor’s series expansion 
of g* about the expected values. The partial derivatives are calculated numerically using a very 
small increment (positive and negative) centred on the expected value. Following the USACE 
practice, a large increment of one standard deviation will be used, in order to capture some of 
the behaviour of the nonlinear functions. 
 

[ ]( ) [ ]( )
( ) ( )

[ ]( ) [ ]( )
i

ii

ii

ii

X

XiXi

XiXi

XiXi

i

XEgXEg
XX

XEgXEg
X
g

σ
σσ

σσ
σσ

2
***** −−+

=
−−+

−−+
≈

∂
∂  (Eq. 28) 

 
And the square of the first order derivative can be estimated by: 
 

[ ]( ) [ ]( ) 2
XiXi

2
X

2

i 2
σXEgσXEg

σ
1

X
g ii

i

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−+
≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂ ***  (Eq. 29) 

 
Substituting (29) in (27): 
 

[ ] [ ]( ) [ ]( )
∑

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−+
=

i

2
XiXi

2
σXEgσXEg

gVar ii
**

*  (Eq. 30) 

 
With this method a number of 2n+1 evaluations of the performance function g* is needed, being 
n the number of random variables considered. 
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7.2.- APPLICATION TO THE CASE STUDY. 
 
In this example only two variables are considered as random variables: friction angle and 
cohesion along the dam-foundation contact. All the other variables are considered as constant 
variables with their respective constant values. Friction angle is supposed to be defined by a 
normal probability function, with mean of 45º and standard deviation of 6.75º. Cohesion is 
normally distributed with mean of 5.00×105 N/m2 and standard deviation of 1.25×105 N/m2. 
Both variables are independent.  
 
The performance function g* is defined as: 
 

1
s
rg −=*  (Eq. 31) 

 
Where r is the shear strength function and s is the loading function. According to the values of 
the case study: 
 

ctgr

ctgcBtgUgAr c

×+××=

×+×−××=⋅+−⋅=

751025.5

75)10375.31023003750(  )(
7

7

φ

φφρ
 (Eq. 32) 

 
And the loading function: 
 

N/m 1005.4901010005.05.0 722 ×=×××=⋅⋅= hgs wρ  (Eq. 33) 
 
So the performance function can be written as: 
 

( ) 1
1005.4

751025.5,* 7

7

−
×

×+××
=

ctgcg φϕ  (Eq. 34) 

 
The  tgϕ  introduces a non linearity in the function. First moment of g*, according to (25), is: 
 

[ ] 222222.11
1005.4

1000.575451025.5* 7

57

=−
×

××+××
=

tggE  (Eq. 35) 

 
And 4 more evaluations of g* are needed: 
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( )
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705.4

1075.375451025.5525.1500.5 ,45*

453704.11
705.4
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947844.01
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1000.57525.381025.5500.5 ,75.645*

570270.11
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1000.57575.511025.5500.5 ,75.645*

57
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=−
××+××

=−
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××+××

=+

=−
××+××

=−

=−
××+××

=+

e
tgeeg

e
tgeeg

e
tgeg

e
tgeg

 (Eq. 36) 
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And applying (30): 
 

[ ]

[ ] 150438005358400968540gVar
2

99074104537041
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94784405702701gVar
22

...*

....*

=+=

⎟
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⎜
⎝
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⎞

⎜
⎝
⎛ −

=  (Eq. 37) 

 
Once the first two moments are known, the reliability index can be calculated using equation 
(22): 
 

[ ] ( ) [ ] [ ] 1511743
1504370

2222221
σ
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σ
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ggg

fallo .
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=  (Eq. 38) 

 
 

0.0
0E

+0
0

5.0
0E

+0
5

1.0
0E

+0
6

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Ángulo de fricción, f (º)

Co
he

si
ón

, c
 (N

/m
2)

g*=0

g*=1.22

g*(μϕ,μc+σc)=1.45
g*(μϕ−σϕ,c)=0.95

g*(μϕ+σϕ,c)=1.57

g*(μϕ,μc-σc)=0.99 Aproximación
lineal en (μϕ,μc)

 
Figure 4: Taylor’s series method. 

 
Contribution of each random variable to overall variance is: 
 
Contribution of ϕ: (0.096854/0.150438)→ 64.38% 
Contribution of c: (0.053584/0.150438)→ 35.62% 
 
To obtain a probability of failure, we have to make an assumption on how the performance 
function g* is distributed. If the hypothesis is that g* is normally distributed,  then: 
 

g*∼ N(μg*;σ2
g*) ∼ N(1.222222; 0.150438) 

 
and the probability of failure Pf[g*≤0] can be calculated: 
 

[ ] ( ) ( ) ( ) 00081301511743ΦβΦ
σ
μ0

Φ0F0gP
g

g
Nf ..*

*

* =−=−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
==≤  (Eq. 39) 

 
Note that this is a CONDITIONAL probability for a certain water level upstream and certain 
drainage system efficiency. 
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8.- LEVEL 2 METHODS. POINT ESTIMATE METHOD. 
 
8.1.- THEORETICAL BASIS. 
 
The point estimated method determine the first two moments of the performance function g* by 
the discretization of the probability distributions of the random variables X1,X2,...,Xn. This 
discretization is made in a few points for each random variable (two or three points), where 
mass probability is concentrated in such a fashion that the sum of the probabilities assigned to 
each point is 1 for each random variable (Rosenblueth [2] y Harr [3]). In the more general 
approximation, the method determines the third moment of the distributions, which allows 
analysis with skewed (asymmetrical) distributions. Random variables can be independent or 
correlated. 
 
With this method there is no need to evaluate partial derivatives of the performance function g*. 
A disadvantage of the method is that the performance function has to be evaluated 2n times, 
being n the number of random variables. If n is large, the method requires a considerable 
computational effort, above all if g* evaluation is not straightforward. 
 
The method concentrates the mass probability of the random variable Xi in two points, xi+ y xi-, 
each of them with a mass probability of Pi+ and Pi-. Points are centred about the mean value, μXi, 
at a distance of di+ and di- times the standard deviationσXi , respectively. 
 

ii

ii

XiXi

XiXi

ii

σdμx

σdμx
1PP

⋅+=

⋅+=
=+

−−

++

−+

 (Eq. 40) 

 
Coefficients di+ y di- are determined using the skew coefficient, γi, of the random variable Xi: 
 

iii

2
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γdd
2
γ

1
2
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+  (Eq. 41) 

 
Probabilities are assigned to each point according to: 
 

+−

−+

−
+

−=
+

=

ii

ii

i
i

P1P
dd

d
P

 (Eq. 42) 

 
In figures 5 and 6 the discretization of a random variable is shown. A number of 2n values of 
discrete probabilities should be obtained by combination of the point probabilities of each 
random variable with the other random variable’s probabilities. These probabilities are 
P(δ1,δ2,...,δn), where δi is the sign (+ ó -).  
 
Values of these probabilities are calculated as: 
 

( ) ∏ ∑ ∑
=

−

= +=
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⎜
⎜
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+=

n

1i
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ijjiiδinδ2δ1δ aδδPP ,,...,,  (Eq. 43) 
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Where the coefficients aij are calculated as: 
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Being ρij the correlation coefficient between random variables Xi y Xj. 
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Figure 5: Probability density function of a random variable Xi. 
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Figure 6: Point Estimate Method discretization of probability of a random variable. 

 
The performance function g* has to be evaluated 2n times, corresponding to the 2n possible 
combinations of discrete probability points P(δ1,δ2,...,δn), obtaining g*(δ1,δ2,...,δn). Once this is 
accomplished, the moment of m order of the probability distribution of g* is determined by: 
 

[ ] ( ) ( )∑≈ m
nδ2δ1δnδ2δ1δ

m gPgE ,...,,,...,, **  (Eq. 45) 
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So for the first moment: 
 

[ ] ( ) ( )∑= nδ2δ1δnδ2δ1δ gPgE ,...,,,...,, **  (Eq. 46) 
 
And for the second moment: 
 

[ ] ( ) ( )∑= 2
nδ2δ1δnδ2δ1δ

2 gPgE ,...,,,...,, **  (Eq. 47) 
 
The variance of g* can be calculated: 
 

[ ] ( )[ ] [ ] 2
g

22
g μgEμgEgVar ** *** −=−=  (Eq. 48) 

 
So it is possible to determine the mean and the variance of the probability distribution of g* but 
the shape of the distribution is not known. If what we want is a probability of failure, again a 
hypothesis of how g* is distributed is to be done. 
 
The method loses precision with the increasing nonlinearity of g* and if moments over the 
second are to be obtained. It does not provide a measure of the contribution of each random 
variable to the overall variance, so it is not an adequate method to filter the most relevant 
random variables. 
 
 
8.2.- APPLICATION TO THE CASE STUDY. 
 
First step is to make the discretization of probability distributions of the random variables. 
Variables ϕ and c are normally distributed (symmetrical), so γϕ = γc = 0 (null skewness). 
Applying (41) we can obtain dϕ+ = dϕ- = 1 and dc+ = dc- = 1, and the points where mass 
probabilities will concentrate are, using (40): 
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 (Eq. 49) 

 
And mass probability values for each random variable are, using (42): 
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 (Eq. 50) 

 
As friction and cohesion are supposed to be independent variables, correlation coefficient is 
null (ρϕc = 0), and applying (44), aϕc = 0.  
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So the calculation of the 2n = 22 = 4 probabilities given in (43) are as follows: 
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 (Eq. 51) 

 
The evaluation of the performance function g* in the 2n = 22 = 4 points where probabilities 
have been calculated leads to: 
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 (Eq. 52) 

 
So the first moment can be determined with equation (46): 
 
[ ]
[ ] 259057.1*gE

716362.025.0179325.125.0338788.125.0801751.125.0*gE
=

×+×+×+×=
 (Eq. 53) 

 
And the second moment with equation (47): 
 
[ ]
[ ] 735661.1*gE

716362.025.0179325.125.0338788.125.0801751.125.0*gE
2

22222

=

×+×+×+×=
 (Eq. 54) 

 
And the variance of g* is calculated with equation (48): 
 

[ ] [ ] 150437.0259057.1735661.1μ*gE*gVar 22
*g

2 =−=−=  (Eq. 55) 
 
To obtain a probability of failure, we have to make an assumption on how the performance 
function g* is distributed. If the hypothesis is that g* is normally distributed,  then: 
 

g*∼ N(μg*;σ2
g*) ∼ N(1.259057; 0.150437) 

 
and the probability of failure Pf[g*≤0] can be calculated: 
 

[ ] ( ) ( ) 000585.0246142.3Φ
150437.0
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μ0

Φ0F0*gP
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⎞
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⎝

⎛ −
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⎟
⎠

⎞
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⎜
⎝

⎛ −
==≤  (Eq. 56) 

 
Note that the probability value obtained with PEM is slightly less than the value estimated with 
Taylor’s series and that variance is the same in both cases.  
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Figure 7: Point Estimate Method. 

 
 
9.- LEVEL 2 METHODS. HASOFER-LIND. 
 
9.1.- THEORETICAL BASIS. 
 
One of the problems of the Taylor’s series method and Point Estimate Method is the lack of 
invariance of the reliability indexes obtained, as their value depend upon the formulation of the 
performance function g*. To avoid this, Hasofer and Lind [4] developed an invariant definition 
of the reliability index.  
 
Let X be the vector of the random variables (X1,X2,...,Xn), normally distributed, μX the vector of 
the mean values, σX the variance-covariance matrix and g*X the performance function, supposed 
to be linear. The reliability index proposed by Hasofer and Lind is defined by: 
 

( ) ( )XX
T

Xx
xxMin μσμβ −−= −1  (Eq. 57) 

 
Subject to: 
 

0)x(g*
X =  (Eq. 58) 

 
The point of the n-dimensional space that verifies the condition is the “design-point”, which lies 
on the limit state region between the safety and the failure domains. Of all of the possible point 
lying on the limit state region, the design-point is the most likely. That is to say that of all 
possible points on the limit state region, at the design point, the joint probability density 
function fX1,X2,..,Xn of all the random variables reaches the highest value.  
 
If random variables are independent, then the variance-covariance matrix is a diagonal matrix, 
where values lying on the diagonal are the variances of the random values, so the problem 
defined by (57) y (58) can be re-written as: 
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Subject to: 
 

0)x,...,x,x(g n21
*
X =  (Eq. 60) 

 
To apply this method is a common practice to transform normal correlated random variables 
(X1,X2,...,Xn) in standard normal uncorrelated random variables with null mean and standard 
deviation being unity (Z1,Z2,...,Zn). To keep the metric in both spaces an orthogonal 
transformation should be done. The first step is to transform initial normal correlated random 
variables in normal uncorrelated random variables (U1,U2,...,Un). This is accomplished by a 
transformation matrix B: 
 

U = BX  (Eq. 61) 
 
As the variance-covariance matrix is symmetric and defined positive, it can be expressed as: 
 

σX = LLT (Eq. 62) 
 
Where L is a triangular matrix which can be obtained from σX. The transformation matrix is 
determined as: 
 

B = L-1   (Eq. 63) 
 
It can be proved that σU = I (Mínguez [1]). 
 
Variable standardization is done by: 
 

( )XU μXBμUZ −=−=  (Eq. 64) 
 
In the transformed space, the formulation of the problem is as follows: 
 

zzMin T

z
=β  (Eq. 65) 

 
Subject to: 
 

0)z(g*
Z =  (Eq. 66) 

 
In the transformed space β is the minimum distance between the origin of coordinates and the 
failure domain. Vector along which the distance β is defined in the transformed space has the 
director cosines determined by: 
 

z
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z
g
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*
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∂
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∂

∂
∂

=  (Eq. 67) 

 
This director cosines represent the sensitivity of the performance function gz* to changes in the 
values of the variable zi.  
 
To solve the minimization problem different algorithms may be used (Newton, gradient, etc.).  
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As in previous methods, probability is derived from the reliability index making an assumption 
on how the performance function is distributed. If random variables are normally distributed 
and the performance function is linear, then  it is normally distributed too. 
 
 
9.2.- APPLICATION TO THE CASE STUDY. 
 
The calculation of the reliability index with the Hasofer-Lind method is expressed by: 
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Subject to: 
 

01
7e05.4

c75φtg7e25.5)c,φ(g* =−
×+×

=  (Eq. 69) 

 
The numerical problem can be solved with different algorithms, as Newton’s or gradient 
method. In this particular case the tool “Solver” implemented in the commercial spreadsheet 
Excel© has been used to solve the problem. 
 
Initial values are ϕ = c = 0. Reliability index obtained is β = 3.656443, for values at the design 
point of ϕ = 28.8987º and c = 1.54e5 N/m2. 
 
Assuming that g* is normally distributed, sliding probability of failure is determined: 
 

[ ] ( ) ( ) 000128.0656443.3Φ0F0*gP Nf =−==≤  (Eq. 70) 
 
This value of probability is less than the values provided by previous methods, and it is a more 
accurate one.. 
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Figure 8: Hasofer-Lind method. 
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10.- LEVEL 3 METHODS. SIMULATION. 
 
10.1.- THEORETICAL BASIS. 
 
Level 3 methods provide a more accurate evaluation of the probability of failure, as they 
consider all the information of the probability density function and not only the first two 
moments. The formulation of the problem is that of equation (4). 
 
To evaluate the integral we can resort to two groups of methods.  
 
In the first group we can find methods based on the transformation of the random variables in a 
fashion similar to FOSM methods. FORM (First Order Reliability Methods) y SORM (Second 
Order Reliability Methods) are methods of this kind. 
 
In the second group we can find methods that try to calculate directly the integral defined by 
equation (4). We have on one side the numerical methods of integration (Simpson, Gauss-
Laguerre, Gauss-Hermite, etc.) and on the other side the simulation methods (Monte Carlo 
Methods). 
 
With the simulation methods we generate N sets of values for the random variables according to 
their probability distributions and possible correlations: 
 

( )
( )

N1,...,  i =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∧∧∧∧
;x,...,x,xx

i
n21i  (Eq. 71) 

 
Generation of these values is accomplished by statistical techniques as the inverse transform 
method, the composition method, the acceptance-rejection method, and others (Rubinstein [5]). 
 
The performance function is evaluated for each one of these sets of values, and the number of 
failures, m, (when g*≤0) is calculated. The probability of failure can be then estimated by: 
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(Eq. 72) 

 
This method of simulation is the normal Monte Carlo method (“Hit or Miss Monte Carlo 
Method”). These simulation methods are deemed “exact methods” in the sense that they provide 
the exact value of the probability of failure when N → ∞. For lower values of N, what we get is 
an approximation of the value of the integral (4). The estimator of the probability of failure 
shows a mean and a variance given by: 
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 (Eq. 73) 

 
The accuracy of the estimation is measured by inverse of the standard deviation of the estimator, 
which is proportional to N0.5. So we can double the precision in the approximation of the value 
of the probability of failure by multiplying by four the number of experiments (USACE [6]).  
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Probabilities of failure in civil engineering in general and in dam engineering in particular are 
very low, being of an order of 1 out of 10000 and less. So to capture this order of magnitude 
with simulation, a large number of experiments are needed, as each experiment is a Bernouilli 
process, with an individual probability of failure equal to the sought probability of failure. 
 
From the early days of the development of the method, researchers have explored techniques 
with the aim of increasing the efficiency of the method (obtain low variances with less 
experiments). Between these techniques to reduce the variance we can find the “importance 
sampling” (Clark [7]), the “correlated sampling” (Cochran [8]), and the “stratified sampling”, 
being one of its variants the “Latin Hypercube Sampling” (Iman et al. [9, 10], McKay et al [11] 
y Startzman el al [12]).  
 
Latin hypercube divides the probability distribution in different intervals equally distributed 
along the Y axis, corresponding to the cumulative probability. During the sampling process an 
identical number of experiments are generated on each of the intervals, so all the probability 
distribution space is swept, even those areas of very low probability that would not have been 
sampled unless a very large number of experiments had been done. 
 
 

Muestreo por Monte Carlo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Variable aleatoria, X

Pr
ob

ab
ili

da
d 

ac
um

ul
ad

a

Valor máximo
de la variable

Valor mínimo
de la variable

Números aleatorios
generados entre 0 y 1

Valores
muestreados

 
Figure 9: Monte Carlo sampling. 

 
So it is very useful to estimate the order of magnitude of the probability of failure previously to 
the programming of a Monte Carlo to optimize the simulation. 
 
It is a common practice to use Monte Carlo techniques to make inferences of the probability 
distribution of the performance function and of the probability distribution of the safety factor, 
which are closely related. 
 
The N evaluations of the performance function form a sample of a random variable, so it is 
possible to make estimations on important parameters (mean, standard deviation, skewness, 
etc.) that help to understand how the performance function is distributed in terms of probability. 
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Figure 10: Latin Hypercube sampling. 
 
Once the probability distribution function Fg*, of the performance function is derived, the 
probability of failure can be determined straightforward by: 
 

[ ] ( )0F0*gPP *gf =≤=  (Eq. 74) 
 
An apparent advantage of this procedure is that, once Fg* is known, which can be done with a 
relative low number of experiments, N, the whole probability domain is fully determined, so 
probability estimations can be done at any level, even in the tails of the distributions. The 
problem that immediately arises is that the estimation made on the probability distribution 
function can be (and it usually is) inaccurate in the tails of the distribution, which are the key 
areas to estimate the probability of failure 
 
 
10.2.- APPLICATION TO THE CASE STUDY 
 
The failure domain g*=0 is defined by equation (75): 
 

01085.130.112),( 6
10

* =××++−=×+×+= ctgcatgaacg φφφ  (Eq. 75) 
 
We consider two random variables: friction angle and cohesion, being both normally 
distributed. 
 
By Monte Carlo techniques different sets of experiments are generated. The number of 
experiments differs for each set: N =100, 1000, 10000, 100000 y 1000000. The sampling is 
done using two techniques: Monte Carlo sampling and Latin Hypercube sampling. 
 
Each pair of sampled values will be used to evaluate the performance function, g*, and so 
determination of the number of “failures”, m, where  g*≤ 0 will be calculated. Probability of 
failure, Pf, is estimated using equation (72). The variance of the probability obtained is 
calculated using equation (73). 
 
Calculations had been carried out with the commercial tool @RISK® implemented in an 
Excel®  spreadsheet. Results are given in Tables 6 and 7. 
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Table 6. Estimation of the probability of failure with Monte Carlo sampling 

Simulations with Monte Carlo sampling 
Direct 

Integration 
Method 

Number of 
experiments, 

N 

Number of 
misses, m 

Probability 
of failure, 
 Pf = m/N 

Variance Standard 
deviation 

Exact 
probability of 

failure, Pf 
1000 0 0 0 0 1.11 ×10-4

10000 1 1.00 ×10-4 1.00 ×10-8 1.00 ×10-4 1.11 ×10-4

100000 18 1.80 ×10-4 1.80 ×10-9 4.24 ×10-5 1.11 ×10-4

1000000 135 1.35 ×10-4 1.35 ×10-10 1.16 ×10-5 1.11 ×10-4

 
Table 7. Estimation of the probability of failure with Latin Hypercube sampling 

Simulations with Latin Hypercube 
Direct 

Integration 
Method 

Number of 
experiments, 

N 

Number of 
misses, m 

Probability 
of failure, 
 Pf = m/N 

Variance Standard 
deviation 

Exact 
probability of 

failure, Pf 
1000 0 0 0 0 1.11 ×10-4

10000 2 2.00 ×10-4 2.00 ×10-8 1.41 ×104 1.11 ×10-4

100000 10 1.00 ×10-4 1.00 ×10-9 3.16 ×10-5 1.11 ×10-4

1000000 116 1.16 ×10-4 1.16 ×10-10 1.08 ×10-5 1.11 ×10-4

 
It should be noted that the method provides accurate results for a number of experiments of the 
same order of magnitude or larger that the probability of failure Latin Hypercube shows 
slightly better results for the same number of experiments. In Figure 11 is shown graphically 
the calculation of the probability of failure with Monte Carlo sampling for N=10000. 
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Figure 11: Probability of failure with Monte Carlo sampling. 
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We can try to adjust a probability distribution to the  N values of g* sampled. Table 8 shows the 
estimators for the mean, variance, standard deviation and skewness, for the sampled values 
using Monte Carlo sampling. 
 

Table 8. Estimators for parameters of g*. Monte Carlo sampling 

Estimators for parameters of g*. Monte Carlo sampling 

Number of 
experiments, N Mean Variance Standard 

deviation Skewness 

1000 1.278071 0.170130 0.412469 0.500776
10000 1.268753 0.170377 0.412768 0.590840

100000 1.260465 0.163442 0.404279 0.482087
1000000 1.260573 0.162467 0.403072 0.474239

 
Results for values sampled using Latin Hypercube techniques are given in Table 9. 
 

Table 9. Estimators for parameters of g*. Latin Hypercube sampling 

Estimators for parameters of g*. Latin Hypercube sampling 

Number of 
experiments, N Mean Variance Standard 

deviation Skewness 

1000 1.260921 0.160528 0.400660 0.372136
10000 1.261030 0.163296 0.404099 0.465118

100000 1.261040 0.163101 0.403858 0.479242
1000000 1.261041 0.162702 0.403364 0.483939

 
It should be noted that faster convergence is obtained with Latin Hypercube. 
 
Adjustment for two probability distribution functions has been done for the case of N=10000 
experiments with both sampling methods (Monte Carlo and Latin Hypercube). This adjustment 
has been carried out with @RISK®. Chi-square good-of-fitness test has been carried out as 
well. 
 
Two distributions have been tested: normal and lognormal. Lognormal distribution has been 
considered as results show certain skewness while normal distribution is symmetric. 
 
The performance function g*, defined by equation (75) can adopt both positive and negative 
values. 
 
Normal distribution is defined in the whole domain ( -∞  < g* < +∞) while Lognormal 
distribution is defined in the positive interval (0 ≤ g* < +∞ ). This is the reason why in the 
process of adjustment it is necessary to consider an offset, s, so the adjustment is done for a 
transformed function G*, defined as: 
 

∞<≤+= *** G0sgG  ;       (Eq. 76) 
 
Chi-square goodness-of-fit test is based in the estimation of:: 
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where: 
 
k = number of intervals in which is divided the domain of g* (74 in this case) 
ni = number of sampled values lying in the i interval. 
Ei = expected value of the number of values corresponding to the i interval. 
 
The better the fit between a certain probability distribution and the sampled values, the less is 
the value of χ2.  
 
One the adjustment is made, the probability of failure can be estimated with equation (74). 
 
Results for adjustments and probabilities of failure with Monte Carlo sampling are given in 
Table 10. In Figures 12 and 13 the adjustment is shown graphically. The Lognormal 
distribution shows a better fit to sampled values. 
 

Table 10. Fit of probability distributions to g*. Monte Carlo sampling 

Values of g* evaluated with Monte Carlo sampling 

Number of experiments, N =10000 

Distribution Mean Variance Offset Test χ2 

Probability of 
failure 

P (g*≤ 0) 
Normal 1.268753 0.170377 0 268.5 1.06 ×10-3

Lognormal 2.728899 0.168983 -1.460194 84.5 2.07 ×10-5
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Figure 12: Fit of a normal distribution to the performance function, g*. 
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Figure 13: Fit of a lognormal distribution to the performance function, g*. 
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If comparison is made between the probability of failure provided by simulation for N=10000 
experiments (1.41×10-4) and the probability of failure estimated adjusting a normal distribution 
to the sampled values of g* (1.06×10-3) it is shown that there is an overestimation of the 
probability of failure. On the other hand, the probability of failure obtained adjusting a 
Lognormal distribution (2.07×10-5) is underestimated. This illustrates the strong difficulties that 
come from fitting distributions to data, if the sought information is in the tails of the 
distributions.  
 
Results for adjustments and probabilities of failure with Latin Hypercube sampling are given in 
Table 11. In Figures 14 and 15 the adjustment is shown graphically. The Lognormal 
distribution shows again a better fit to sampled values. 
 

Table 11. Fit of probability distributions to g*. Latin Hypercube sampling. 

Values of g* evaluated with Latin Hypercube sampling 

Number of experiments, N =10000 

Distribution Mean Variance Offset Test χ2 

Probability of 
failure 

P (g*≤ 0) 
Normal 1.261030 0.163296 0 264.8 9.02 ×10-4

Lognormal 3.047930 0.162627 -1.786922 87.1 3.34 ×10-5
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Figure 14: Fit of a normal distribution to the performance function, g*. 
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Figure 15: Fit of a lognormal distribution to the performance function, g*. 
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If comparison is made between the probability of failure provided by simulation for N=10000 
experiments (1.41×10-4) and the probability of failure estimated adjusting a normal distribution 
to the sampled values of g* (9.02×10-4) it is shown that there is an overestimation of the 
probability of failure. On the other hand, the probability of failure obtained adjusting a 
Lognormal distribution (3.34×10-5) is underestimated 
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