

DAMSE

"A European Methodology for the Security Assessment of dams"

DAMSE Methodology

"Universidad Politécnica de Valencia"

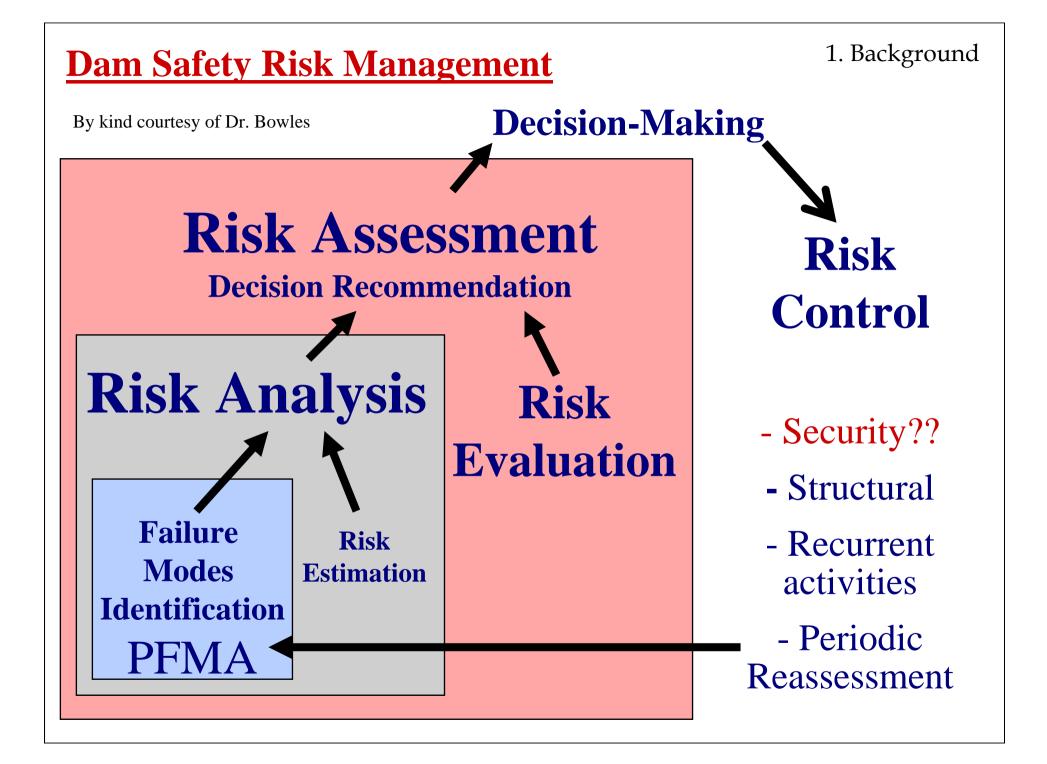
Dr. Manuel G. de Membrillera Ortuño

Outline of presentation

1. Background

2. Screening analysis

3. Planning


- 3.1. Facility characterization
- 3.2. Customization of Fault Tree
- 3.3. Threat assessment
- 3.4. Consequences assessment
- 3.5. Preparation for site survey
- 4. Analysis
 - 4.1. Site survey
 - 4.2. System effectiveness analysis
 - 4.3. Estimation of risk
- 5. Risk management

Objectives of DAMSE (reminder):

The project is aimed at the development and validation of a methodology for the *security assessment* of dams against threats such as: *terrorist attacks*, *sabotage* and *malevolent intrusions*.

(to be proposed as a common framework for the effective protection of dams at EU level)

Acknowledgement of Expert Panel contribution

- The objective will be to identify, understand and qualitatively estimate the risks associated with a spectrum of adversarial attack scenarios on dams
- The goal of the methodology is to provide dam owners and stakeholders with a systematic basis for security management decision making

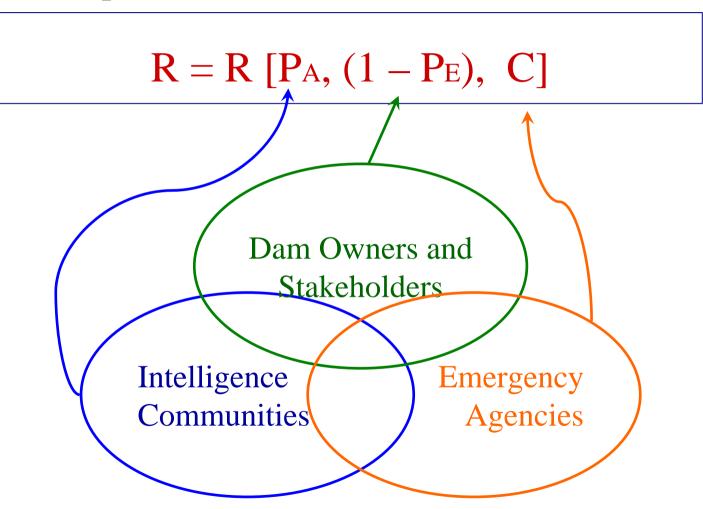
In the context of dam security, the question is "how do we get started?"

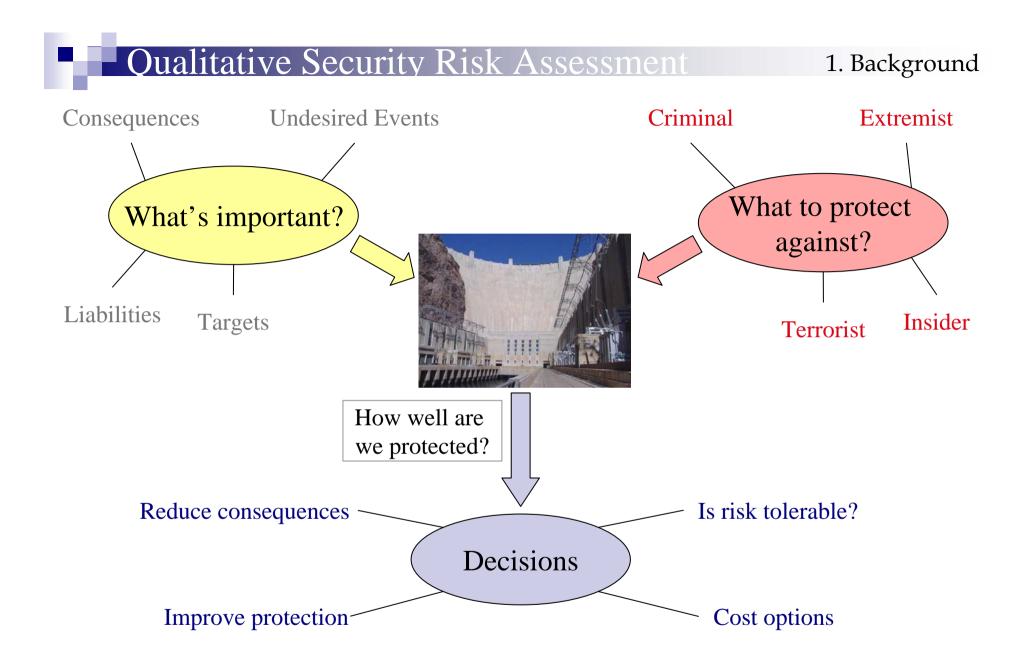
- We will take on the mindset of adversaries
- We will focus on particular undesired events that will be the "loss of mission" events
- We will adopt a deductive way of thinking, beginning with these undesired events

In addition, we will bear in mind the risk equation:

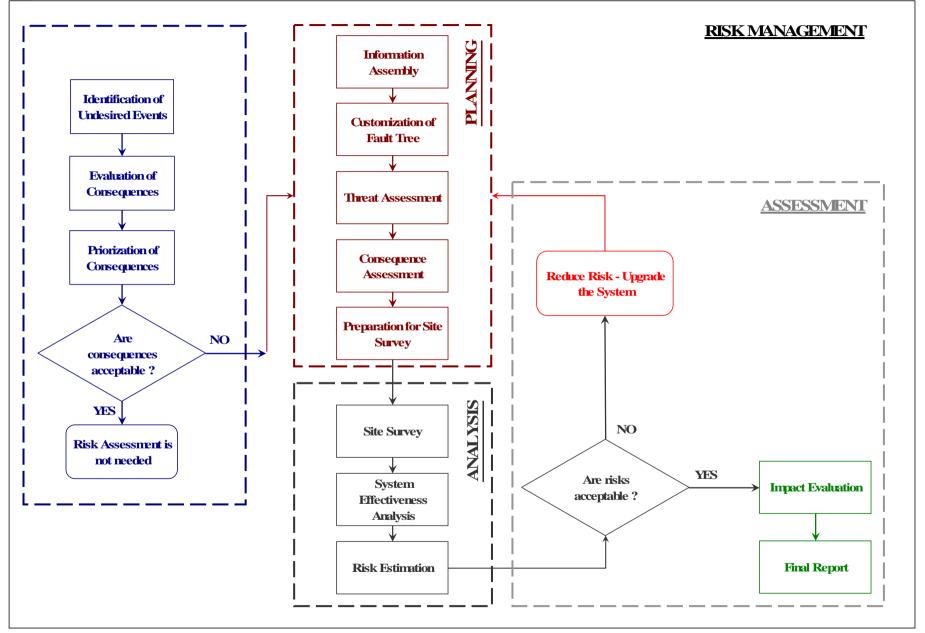
RISK is a function of:

(LIKELIHOOD OF ATTACK),


(1-SYSTEM EFFECTIVENESS), and

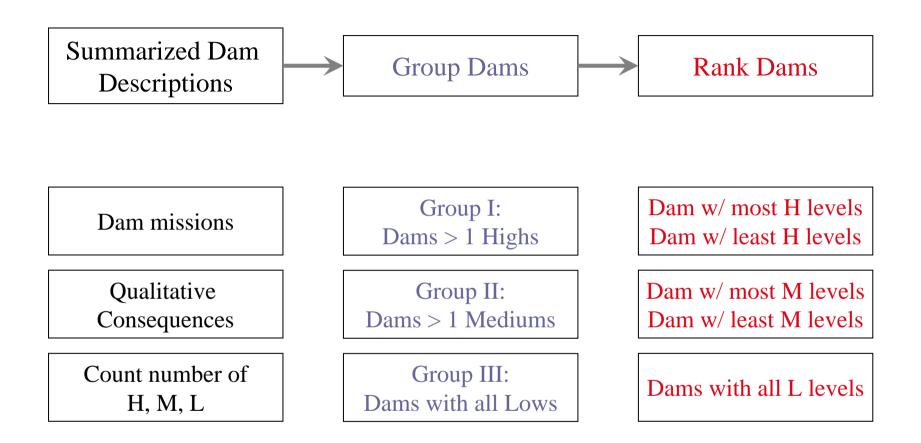

(CONSEQUENCES)

The methodology will therefore address the factors of the equation


$$R = R [P_A, (1 - P_E), C]$$

The methodology will therefore address the factors of the equation

⁽Adapted from Biringer et al, 2007)


Outline of presentation

- 1. Background
- 2. Screening analysis
- 3. Planning
 - 3.1. Facility characterization
 - 3.2. Customization of Fault Tree
 - 3.3. Threat assessment
 - 3.4. Consequences assessment
 - 3.5. Preparation for site survey
- 4. Analysis
 - 4.1. Site survey
 - 4.2. System effectiveness analysis
 - 4.3. Estimation of risk
- 5. Risk management

. Screening Analysis

- It is an optional step before an investment is made in a complete security risk assessment
- Decision makers need an efficient process to select which dams warrant a full risk assessment first
- To provide the needed differentiation for screening, the consequence impact is proposed as the key parameter, although other risk factors can be considered
- In any case, the final responsibility for selection lies with the decision makers

2. Screening Analysis

Summary Table

DAMSE Preliminary Screening Procedure													
Dam description				i -			Consequences Assessment						
Name	Location	Туре	Year of	Storage		Dam missions loss		Public	Economi	Environmenta	Total	Rankin	Full
TVAILLE			const.	Capacity				Safety	c	1	Score	g	Security
dam1	loc1	typ1	year1	cap1	X	Loss of Reservoir		8	8	8	24	Η	YES
						Loss of Hydroelectric			n/a		0	n/a	NO
					X	Loss of Water Supply			4	2	6	L	NO
					X	Loss of recreation, tourism			2		2	L	NO
						Loss of Navigation			n/a		0	n/a	NO
						Tot. Score		8	14	10	32	Μ	YES
Evaluator:	Name_Lastna	Evaluation	day/month/										
	me	date:	year										
	loc2	typ2	year2	cap2		Loss of Reservoir	l	10	10	10	30	H	YES
dam2					X	Loss of Hydroelectric			10		10	Μ	YES
						Loss of Water Supply			n/a	n/a	0	n/a	NO
						Loss of recreation, tourism			n/a		0	n/a	NO
						Loss of Navigation			n/a		0	n/a	NO
						Tot. Score	ę	10	20	10	40	Μ	YES
Evaluator:	Name_Lastna	a Date: day/m											
	me	Date.	year										
					L						-		

Consequences Basic Table

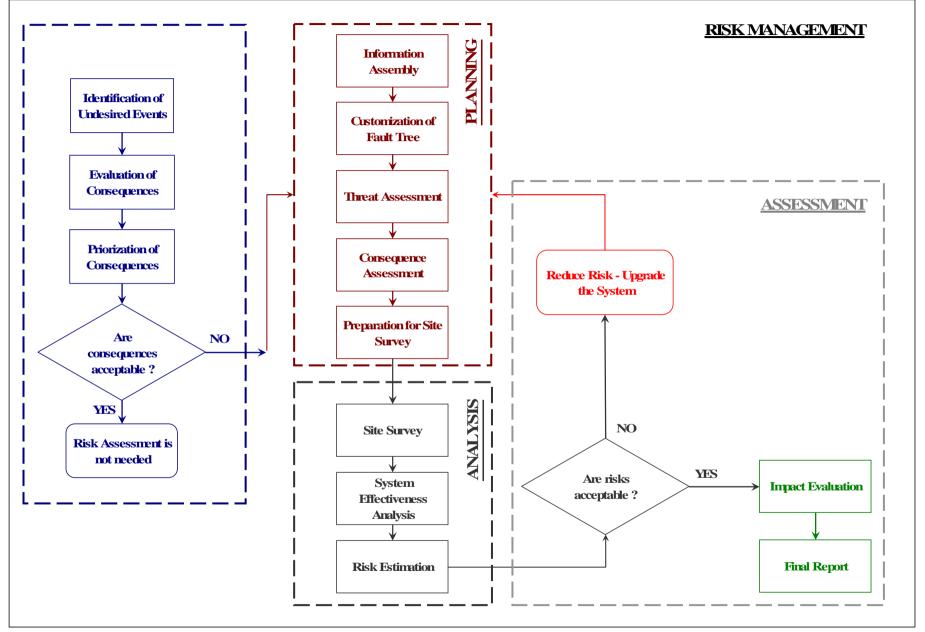
Table 1 - Consequence values								
	Very High Score = 10	High S = 8	Medium S = 6	Low S = 4	Very Low S = 2			
Public Safety	Population at risk is very high (PAR>1000 people)	Population at risk is high (PAR = 100-1000)	Population at risk is medium (PAR = 10-100)	Population at risk is low (PAR = 1 - 10)	There is no population at risk (except incidentaly)			
Economic	National to multi-region disruption of essential facilities and access. Economic Impact: Massive losses (>€1B)	Multi-regional disruption of essential facilities and access. Economic Impact: Multi-regional losses, (€100M to €1B) major public and private facilities	Regional disruption of essential facilities and access.Economic Impact: Regional losses , (€10M to €100M).	disruption of essential facilities and access. Economic Impact: Local to regional	No disruption of essential facilities and access. Economic Impact: Minimal and confined to facility only			
Environmental	Massive environmental mitigation cost or impossible to mitigate.	Very large environmental cost mitigation and multi year recovery		Medium environmental mitigation cost and less than 1 year to recover	Minor environmental mitigation cost			

Ranking criteria:

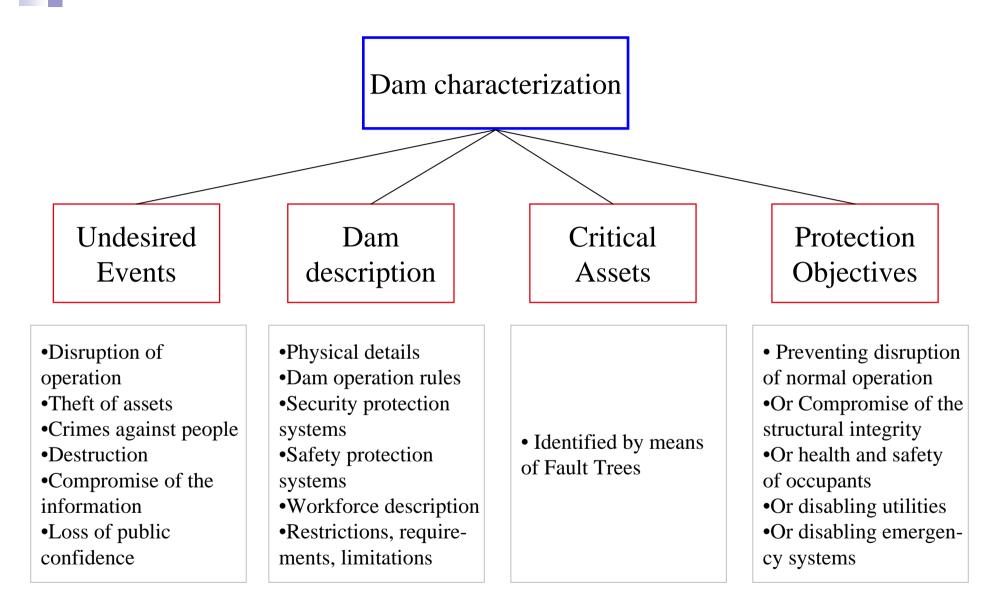
End users must give clear justification for score assignment Ordering criteria for full security assessment (see example):

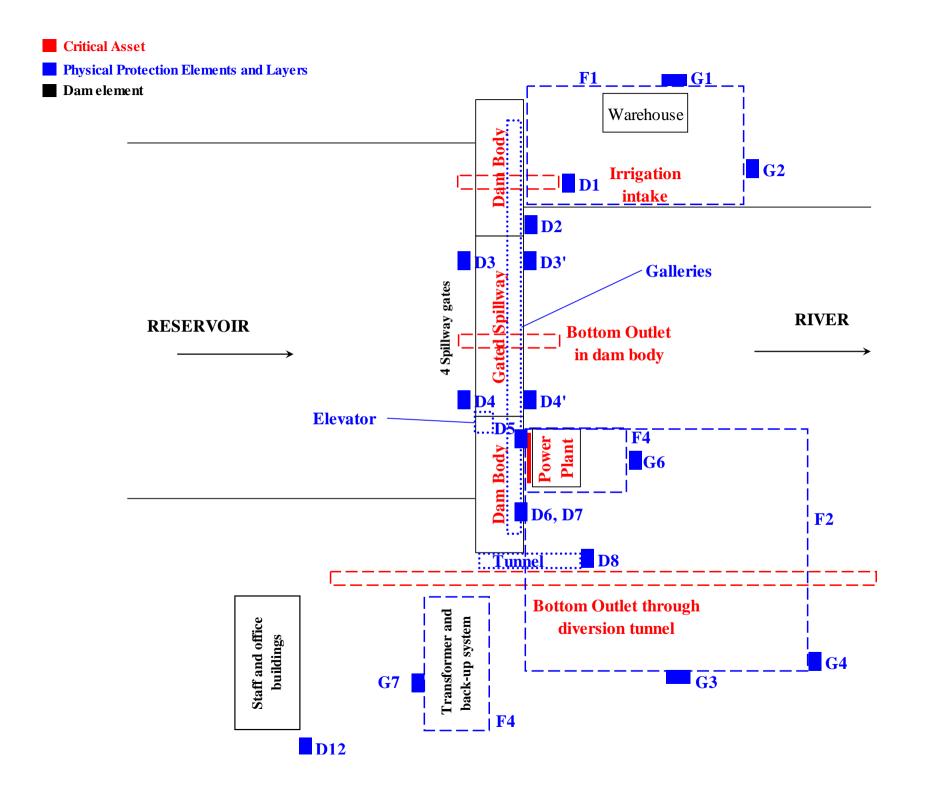
1st level - among single mission loss: select consequences H or M2nd level - (If after level 1 conseq. are still comparable) among multiple mission loss: select consequences H or M

Consequence classification							
Single mission loss	$2 \le S < 10$	10 <= S <= 20	20 < S <= 30				
Multiple mission loss	4 <= S < 26	26 <= S <= 53	53 < S <= 80				
Category	Low (L)	Medium (M)	High (H)				


3rd level - (If after level 2 conseq. are still comparable): select highest total

Outline of presentation


- 1. Background
- 2. Screening analysis


3. Planning

- 3.1. Facility characterization
- 3.2. Customization of Fault Tree
- 3.3. Threat assessment
- 3.4. Consequences assessment
- 3.5. Preparation for site survey
- 4. Analysis
 - 4.1. Site survey
 - 4.2. System effectiveness analysis
 - 4.3. Estimation of risk
- 5. Risk management

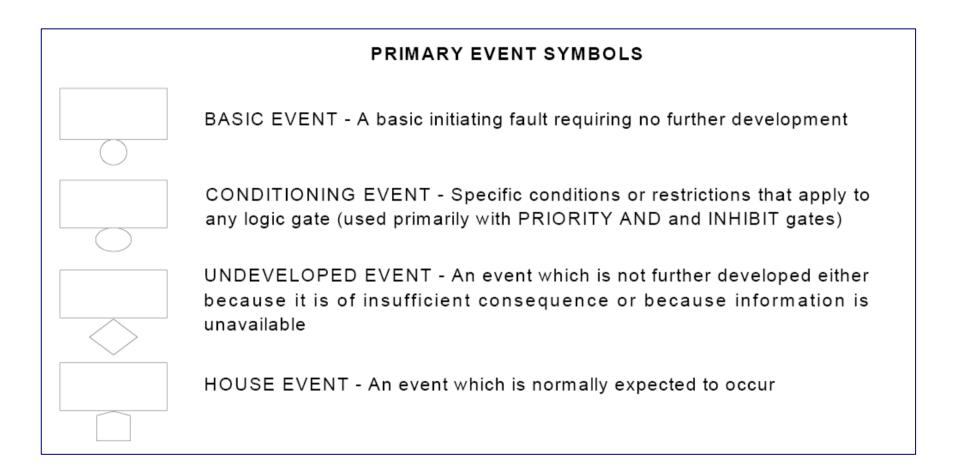
3.1. Dam characterization

Outline of presentation

- 1. Background
- 2. Screening analysis

3. Planning

- 3.1. Facility characterization
- 3.2. Customization of Fault Tree
- 3.3. Threat assessment
- 3.4. Consequences assessment
- 3.5. Preparation for site survey
- 4. Analysis
 - 4.1. Site survey
 - 4.2. System effectiveness analysis
 - 4.3. Estimation of risk
- 5. Risk management


Fault Tree Analysis

- Used to describe the causes of an undesired top event
- It's a graphical construct that shows the logical interaction among the elements of a system whose failure, individually or in combination, could contribute to the occurrence of a defined undesired event
- Structured rendering of process steps and barriers against failure
- Deductive way of thinking

Value of the Customized Fault Tree

- The value of this customized fault tree lays on:
 - Complete picture of security events at a dam
 - □ Identifies critical assets to each mission
 - \Box Shows what needs to be protected:
 - □ Helps to document critical assets

FTA: some important symbols

3.2. Customization of Fault Tree **FTA: some important symbols**

GATE SYMBOLS

AND - Output fault occurs if all of the input faults occur

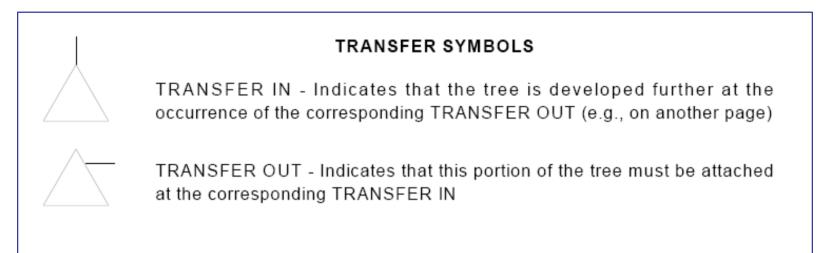
OR - Output fault occurs if a least one of the input faults occurs

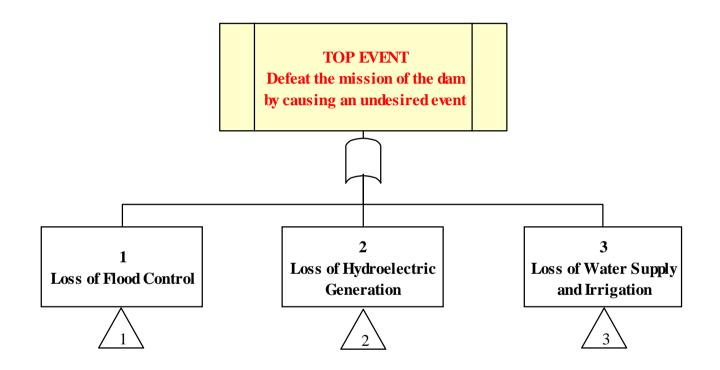
COMBINATION - Output fault occurs if n of the input faults occur



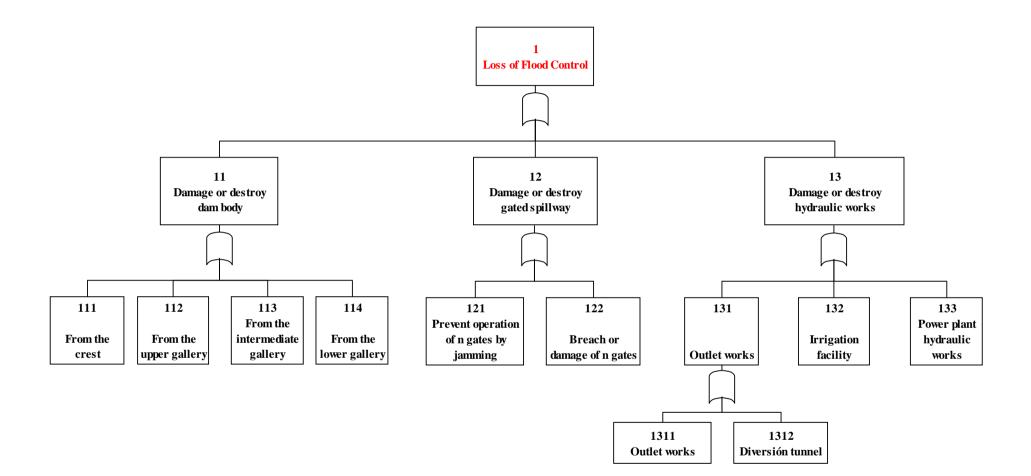
n

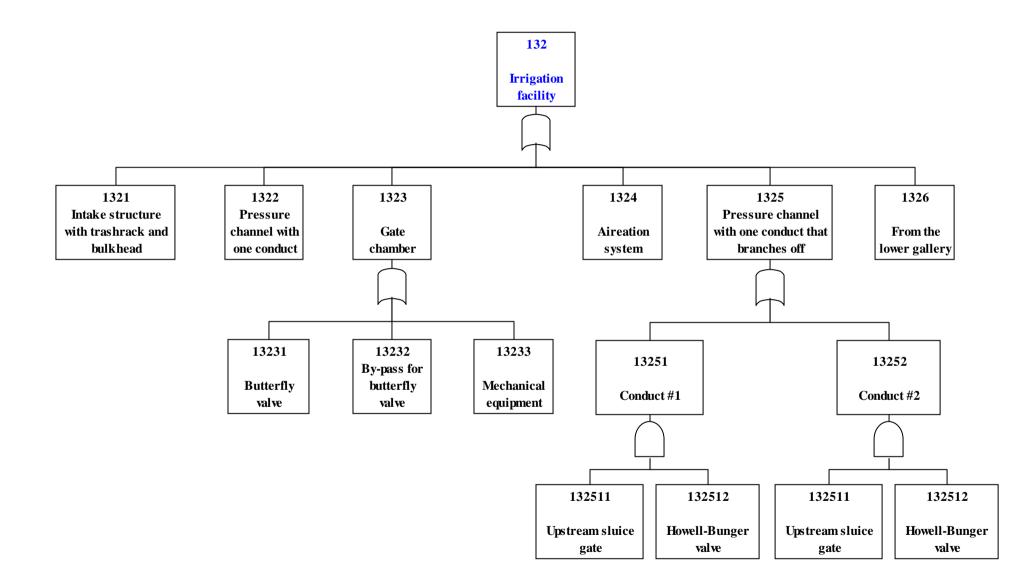
EXCLUSIVE OR - Output fault occurs if exactly one of the input faults occurs

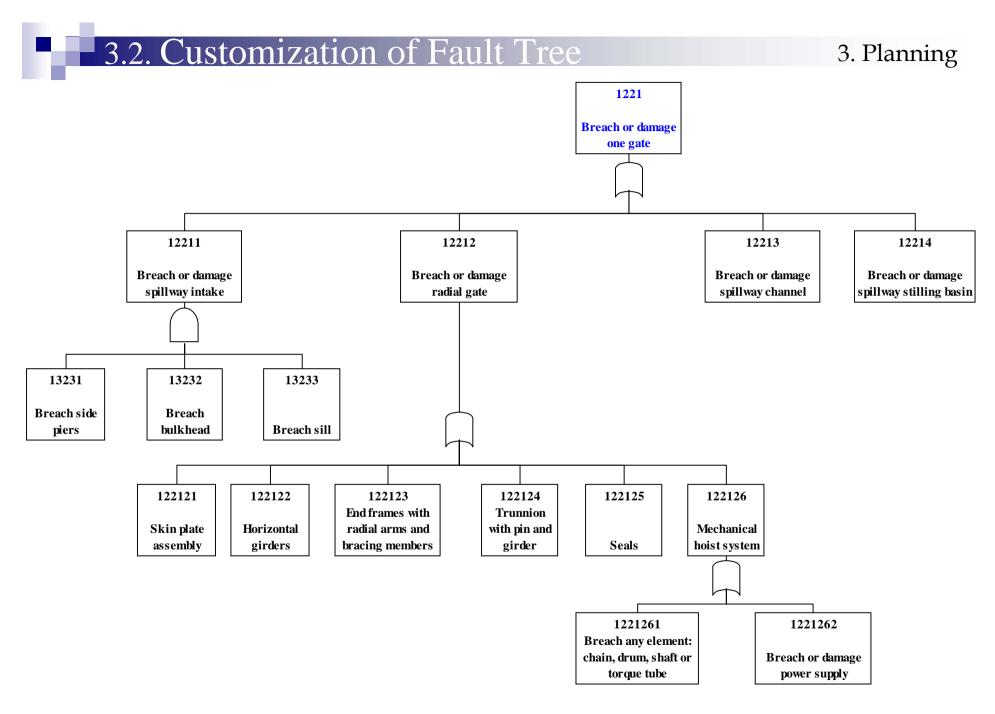

PRIORITY AND - Output fault occurs if all of the input faults occur in a specific sequence (the sequence is represented by a CONDITIONING EVENT drawn to the right of the gate)


INHIBIT - Output fault occurs if the (single) input fault occurs in the presence of an enabling condition (the enabling condition is represented by a CONDTIONING EVENT drawn to the right of the gate)

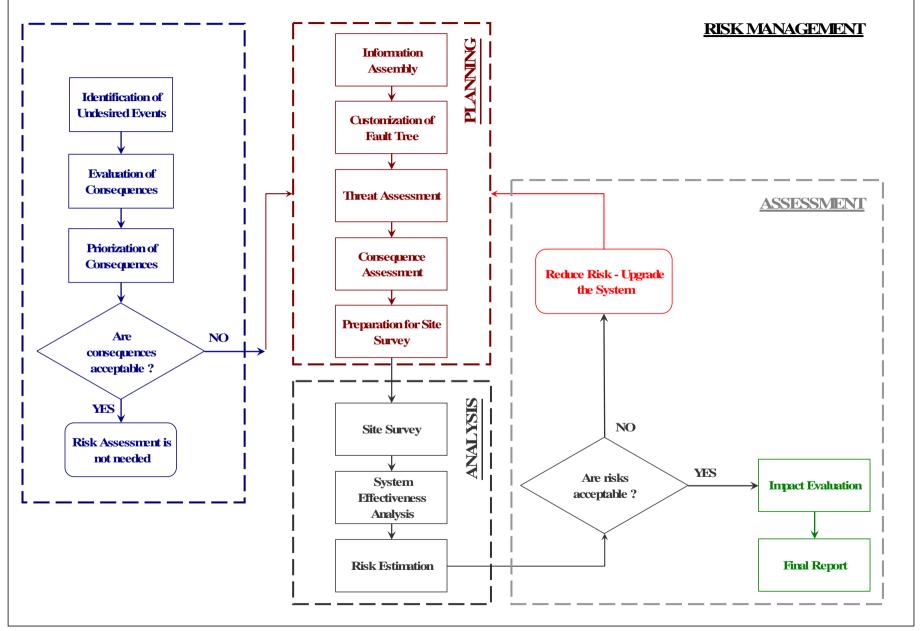
2. Customization of Fault Tree


FTA: some important symbols


3.2. Customization of Fault Tree



3.2. Customization of Fault Tree

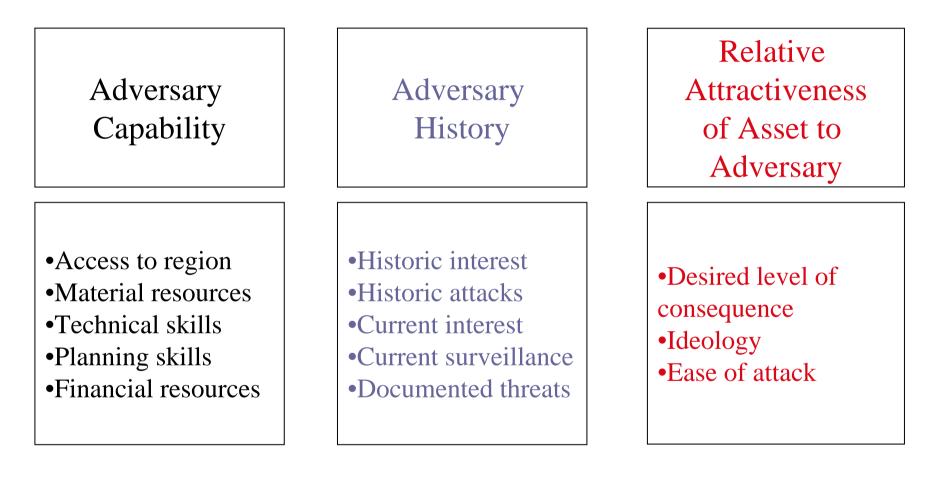

3.2. Customization of Fault Tree

Outline of presentation

- 1. Background
- 2. Screening analysis
- 3. Planning
 - 3.1. Facility characterization
 - 3.2. Customization of Fault Tree
 - 3.3. Threat assessment
 - 3.4. Consequences assessment
 - 3.5. Preparation for site survey
- 4. Analysis
 - 4.1. Site survey
 - 4.2. System effectiveness analysis
 - 4.3. Estimation of risk
- 5. Risk management

3.3. Threat Assessment

- Threat description, carried out before any vulnerability analysis, and including possible adversaries, tactics, and capabilities
- Likelihood of attack, estimated per undesired event and per adversary group, taking into account statistics of past events and sitespecific perceptions


3. Planning

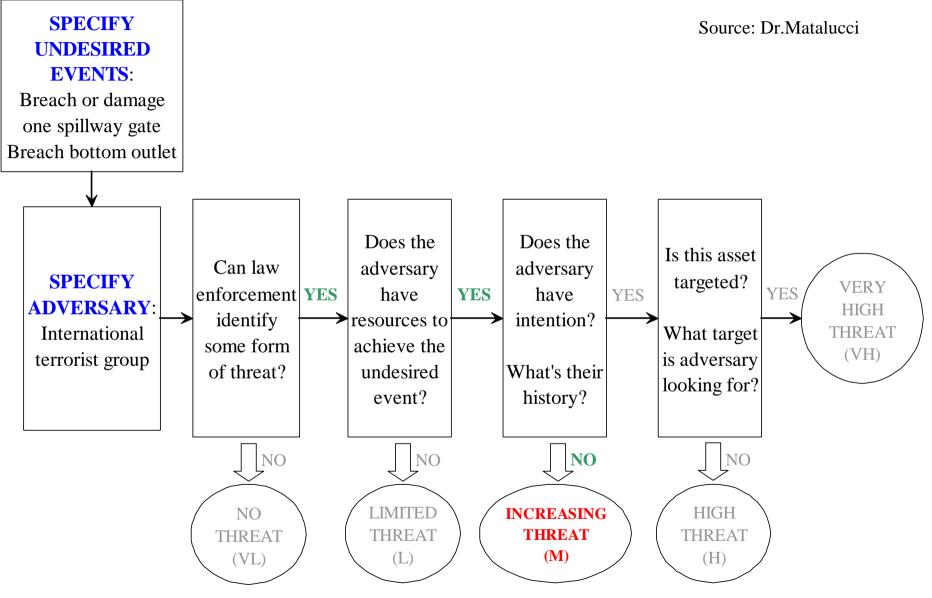
3.3. Threat Assessment

- Types of adversaries:
 - □ Outsiders:
 - Terrorists
 - Criminals
 - Extremists
 - Vandals
 - Foreign intelligence personnel
 - Psychotics (people suffering from mental disorder)

□ Insiders

3.3. Threat Assessment

Source: Biringer et al, 2007

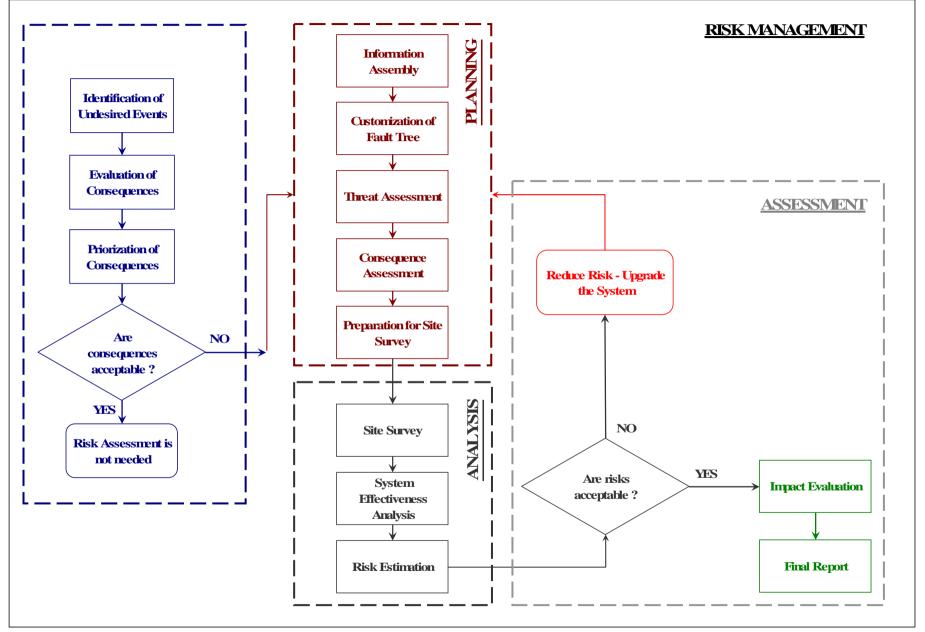

3.3. Threat Assessment

This description of possible adversarial threats can be carried out:
Based on present information
Based on "WHAT IF" scenarios

Since dam security is dynamic, it's important to update the threat assessment

3. Planning

3.3. Threat Assessment

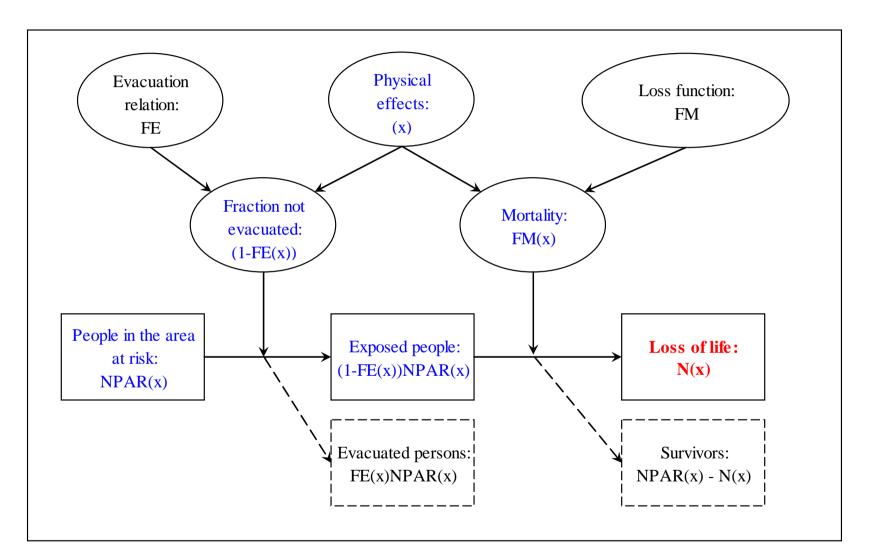

Outline of presentation

- 1. Background
- 2. Screening analysis

3. Planning

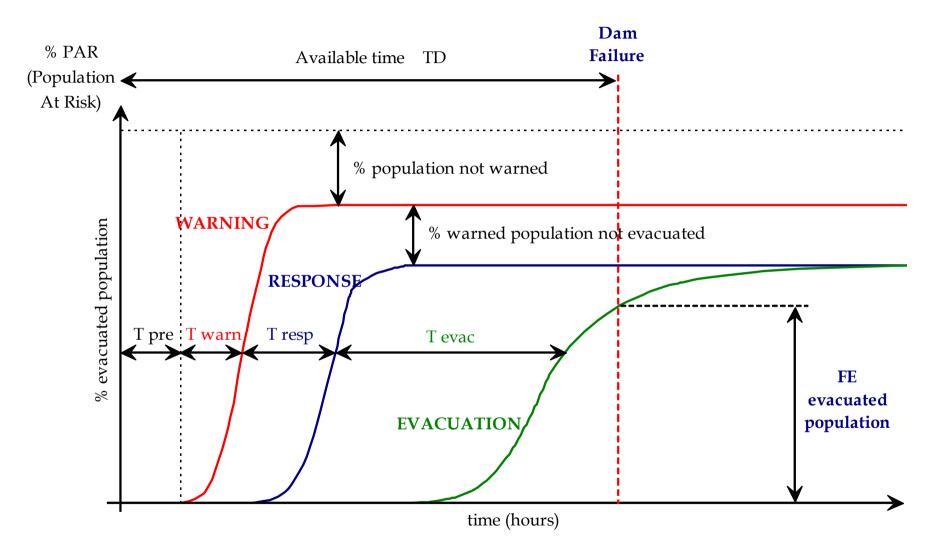
- 3.1. Facility characterization
- 3.2. Customization of Fault Tree
- 3.3. Threat assessment
- 3.4. Consequences assessment
- 3.5. Preparation for site survey
- 4. Analysis
 - 4.1. Site survey
 - 4.2. System effectiveness analysis
 - 4.3. Estimation of risk
- 5. Risk management

Qualitative Security Risk Assessment


3. Planning

3.4. Consequence Assessment

	Table 1 - Consequence values						
	Very High Score = 10	High S = 8	Medium S = 6	Low S = 4	Very Low S = 2		
Public Safety	Population at risk is very high (PAR>1000 people)	Population at risk is high (PAR = 100-1000)	Population at risk is medium (PAR = 10-100)	Population at risk is low (PAR = 1 - 10)	There is no population at risk (except incidentaly)		
Economic	National to multi-region disruption of essential facilities and access. Economic Impact: Massive losses (>€1B)	Multi-regional disruption of essential facilities and access. Economic Impact: Multi-regional losses, (€100M to €1B) major public and private facilities	Regional disruption of essential facilities and access.Economic Impact: Regional losses , (€10M to €100M).	Local to regional disruption of essential facilities and access. Economic Impact: Local to regional (< €10M).	No disruption of essential facilities and access. Economic Impact: Minimal and confined to facility only		
Environmental	Massive environmental mitigation cost or impossible to mitigate.	Very large environmental cost mitigation and multi year recovery	0	Medium environmental mitigation cost and less than 1 year to recover	Minor environmental mitigation cost		


3. Planning

3.4. Consequence Assessment

3. Planning

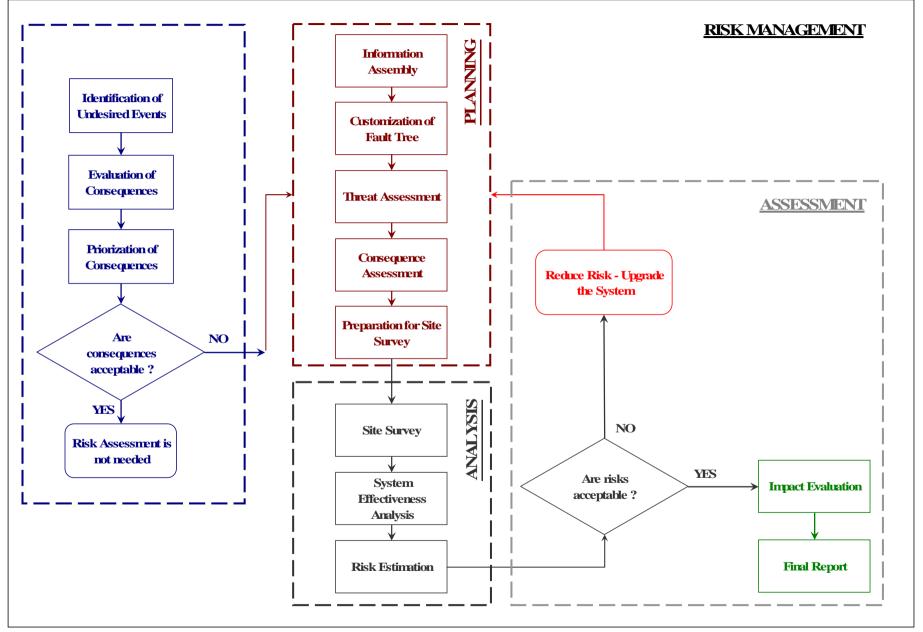
3.4. Consequence Assessment

Outline of presentation

- 1. Background
- 2. Screening analysis

3. Planning

- 3.1. Facility characterization
- 3.2. Customization of Fault Tree
- 3.3. Threat assessment
- 3.4. Consequences assessment
- 3.5. Preparation for site survey
- 4. Analysis
 - 4.1. Site survey
 - 4.2. System effectiveness analysis
 - 4.3. Estimation of risk
- 5. Risk management


3.5. Preparation for site survey

- Prior to the surveys, check-sheets and worksheets are handed out
 - List of potential critical assets
 - □ List of dam missions
 - □ List of security systems: protection layers and elements between areas of the dam and its appurtenances
 - **Emergency planning and procedures**
 - □ Site layout showing targets and layers of protection

Outline of presentation

- 1. Background
- 2. Screening analysis
- 3. Planning
 - 3.1. Facility characterization
 - 3.2. Customization of Fault Tree
 - 3.3. Threat assessment
 - 3.4. Consequences assessment
 - 3.5. Preparation for site survey
- 4. Analysis
 - 4.1. Site survey
 - 4.2. System effectiveness analysis
 - 4.3. Estimation of risk
- 5. Risk management

Qualitative Security Risk Assessment

- □ With the help of end-users and carried out by a team
- □ Collection of information not available before
- □ Completion and validation of:
 - Check-sheets and worksheets
 - System layout
- □ By means of observation and interviews
- □ It allows the system effectiveness analysis

B.

1	Dam name/Nombr	e de la Presa	
2	Location/Loca	lización	DAM 1
3	Type/Tij	00	
4	Date built/Fecha de	contrucción	
5	Purpose/Fu	nción	Retaining water, flood prevention/Almacenamiento y control de avenidas
6	Height (m)/	Altura	
7	Crest Length (m)/Longit	ud de Coronación	
8	Storage (hm ³)/C	Capacidad	
9	Capacity of spillway (m ³ /s)/Capacidad del Aliviadero		
10	Freeboard (m)/Resguardo		Storage is limited to 1/3 from September to December/Se limita la capacidad de almacenamiento a 1/3 entre Septiembre y Diciembre
		WORKSHEET	T#1. DAM DATA

--- LEGEND OF LABELS AND SYMBOLS --- LEYENDAS Y SIMBOLOS Critical Assets/Puntos Criticos CA1. CA2...: D18 Access to gated/ intermediate spillway D19 Access to gated/ intermediate spillway stilling basin CA-1 Main spillway/Aliviadero principal D20 Access to voltage transformer 2 CA-2 Dam body/Cuerpo de presa D21 Access to voltage transformer 3 CA-3 Intermediate Gated spillway/Desagüe intermedio D22 Access to regulating pool CA-4 Outlet works/ Desagüe de fondo D23 Access to jucar-turia channel CA-5 Dam office building/Casa de administración D24 Access to outlet works through Gallery G 14-1 CA-6 Diversion tunnel/Tunel de desvío D25 First access to water surge building CA-7 Intake tower/Torre de toma D26 Second access to water surge building CA-8 Pump station/Estación de bombeo D27 Access to pump station building CA-9 Regulation pool/Estangue de regulación D28 Access to Murteral Creek CA-10 Recreation facility/Zonas de recreo D29 Access to voltage transformer 2 D30 Access to reservoir from left abutment G1. G2...: Galleries/Galerías D31 Access to voltage transformer 2 building D32 Access to crest from left abutment C1. C2...: Chambers/Cámaras D33 Access to Dam Toe D34 Access to Gallery G-4-1 E1, E2...: Elevators D35 Access to voltage transformer 3 building E1 Elevator to g 18.2 D36 Access to bridge over the Jucar River E2 Elevator to well 2 D37 Internal Door before the jucar bridge E3 Elevator to well 2 A1. A2... : Other assets/Otros elementos P1, P2...: Power supplies/Alimentación eléctrica P1 Voltage transformer 1 F1. F2...: Fence or other physical barrier/Valla u otra Barrera Fisica P2 Voltage transformer 2 P3 Voltage transformer 3 R1. R2...: Road/Carretera R1 Road from Tous D1, D2...: Doors or gates/Puertas R2 Road from Navarrés D1 Tous Road R3 Road from Antella D2 Navarrés Road R4 Road to access intermediate spillway intake D3 Antella Road R5 Road through the crest D4 Dam office building R6 Road to dam toe D5 Access to gallery D-4.1 R7 Road to regulation pool D6 Acces to well P2 R8 Road to recreational area (point view) D7 Acces to well P3 R9 Road to acces reservoir from left abutment D8 Acces to well P4 D9 Acces to spillway aireation conduit S1, S2...: Security systems such as tv cameras or movement sensors D10 First access intake towers S1 Camera at D1 D11 Access to intake valve tower S2 Camera at D2 D12 Exit from intake valve tower S3 Camera at D3 D13 Access to intake tower D14 Access to outlet works gallery D15 Access to reservoir from right abutment WORKSHEET#2. SYSTEM LAYOUT D16 Access to galleries from right abutment D17 Access to galleries from left side of spillway

4. Analysis

4. Analysis

DAM MISSION LOSSES PERDIDAS DE MISION DE LA PRESA	INVOLVED CRITICAL ASSETS PUNTOS CRÍTICOS INVOLUCRADOS
Loss of Flood Control or Retaining Capacity	CA-1 Main spillway/Aliviadero principal CA-2 Dam body/Cuerpo de presa CA-3 Intermediate Gated spillway/Desagüe
Pérdida de capacidad	intermedio CA-4 Outlet works/ Desagüe de fondo
y/o de control de avenidas	CA-5 Dam office building/Casa de administración
Loss of Water supply and Irrigation	CA-2 Dam body/Cuerpo de presa CA-3 Intermediate Gated spillway/Desagüe intermedio
Pérdida del abastecimiento y el riego	CA-4 Outlet works/ Desagüe de fondo CA-5 Dam office building/Casa de administración CA-6 Diversion tunnel/Tunel de desvío CA-7 Intake tower/Torre de toma CA-8 Pump station/Estación de bombeo
Loss of Recreation and Tourism Pérdida de la zonas de Recreación y Turismo	CA-9 Regulation pool/Estanque de regulación CA-2 Dam body/Cuerpo de presa CA-3 Intermediate Gated spillway/Desagüe intermedio CA-4 Outlet works/ Desagüe de fondo CA-5 Dam office building/Casa de administración CA-6 Diversion tunnel/Túnel de desvío CA-7 Intake tower/Torre de toma CA-8 Pump station/Estación de bombeo CA-9 Regulation pool/Estanque de regulación CA-10 Recreation facility/Zonas de recreo

WORKSHEET#3. DAM MISSION LOSSES AND CRITICAL ASSETS

Name/ Nombre:	Intermediate spillway,	Gated	Label/ Etiqueta:		CA3			ocation/ ización:	Inside th Dentro de		
	description: oción Fisica	intake structure (trashracked)/Toma pressure channel/Conducción a presión gate chamber/Cámara de compuertas sluice gate/compuerta tajadera by-pass/by-pass radial gate/compuerta radial mechanical equipment/equipamiento electromecánico aireation system/sistema de aireación open channel/canal de descarga stilling basin/cuenco amortiguador									
	nction: Inción	Collect water from the upstream side of a dam to the downstream side/Conducir el agua desde aguas arriba hasta aguas abajo									
	ndition: ndición	S Go	od/Buena		Average/Regular				Bad/mala		
vi Con que	n is this asset sited? frecuencia se isita?	All the time/en todo momento	Couple of times per day/2 veces al día	day	nce per /Una vez al día	Couple times p week/2 v por sem	ber reces	Once per week/1 vez por semana	Randomly/ Aleatoriamente	Rarely/ Ocasionalmente	
	its the asset? lo visita?	Dam Operator once per day and dam officer and maintenance company once or twice per week/Un operador al menos una vez al día y un official de presa o personal de la empresa de mantenimiento una vez a la semana									
ske Comenta	ents, notes, etches arios, notas, emas:	WORKSH	IEET#4. D	ETA	ILED I	DESCR	IPTI	ON OF (CRITICAL	ASSETS	

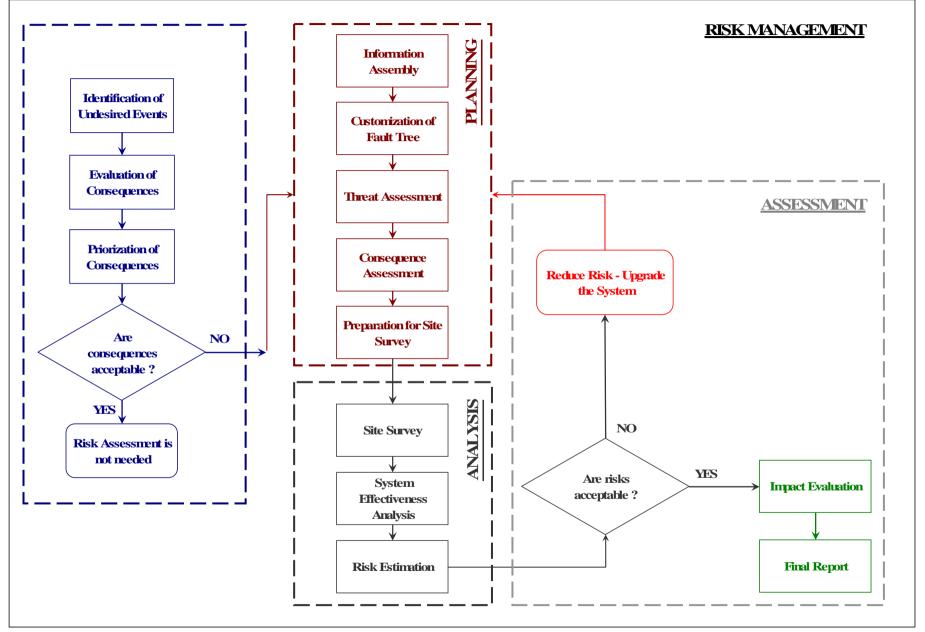
Name Nombre	Label Etiqueta	Location Localización	Type Tipo (material)	Lock type Tipo de cerradura	Other comments Otros comentarios
Door Puerta	D1	R1	Iron/Metal	Conventional /Convencional	Can be opened remotely/Puede operarse remotamente. There is also a camera (S1)/Tiene una cámara (S1). Vehicles/Paso de vehículos.
Door Puerta	D2	R2	Iron/Metal	Conventional /Convencional	Can be opened remotely/Puede operarse remotamente. There is also a camera (S2)/Tiene una cámara (S2). Vehicles/Paso de vehículos.
Door Puerta	D3	R3	Iron/Metal	Conventional /Convencional	Can be opened remotely/Puede operarse remotamente. There is also a camera (S3)/Tiene una cámara (S3). Vehicles/Paso de vehículos.
Door Puerta	D4	Dam office building/Edificio de control de la presa	Iron/Metal	Reinforced /Blindada	
Door Puerta	D5	Access to gallery D- 4.1. /Acceso a gallería D-4.1	Iron/Metal	Conventional /Convencional	
Door Puerta	D6	Acces to well P2/Acceso a pozo P2	Iron/Metal	Conventional /Convencional	
Door Puerta	D7	Acces to well P3/Acceso a pozo P3	Iron/Metal	Conventional /Convencional	WORKSHEET#5:
Door	D8	Acces to well P4/Acceso a pozo P4	Iron/Metal	Conventional /Convencional	LOCATION AND
Door	D9	Acces to spillway aireation conduit. Acceso a la aireación del aliviadero	Iron/Metal	Conventional /Convencional	DESCRIPTION OF PHYSICAL BARRIERS

Element /Elemento	Location /Localización	Label /Etiqueta	Condition & Maintenance /Condición y Mantenimiento)peration mo lodo de traba		Who * + What Quién + qué
Camera	Door 1	S 1	Excellent	Good	Poor	24/7	Often	Seldom	Dam officer/vehicles
/Cámara	/Puerta 1	51	Excelente	Buena	Mala	24/7	A menudo	Poco	Oficial de presa/vehículos
Camera	Door 2	S2	Excellent	Good	Poor	24/7	Often	Seldom	Dam officer/vehicles
/Cámara	/Puerta 2	52	Excelente	Buena	Mala	24//	A menudo	Poco	Oficial de presa/vehículos
Camera	Door 3	S 3	Excellent	Good	Poor	24/7	Often	Seldom	Dam officer/vehicles
/Cámara	/Puerta 3	33	Excelente	Buena	Mala	24)/	A menudo	Poco	Oficial de presa/vehículos

*: Who receives the output of the system? For example, in case of a tv camera, who watches the cameras, in case of an intrusion alarm, who receives the alarms...Quién recibe la información del sistema de seguridad? Por ejemplo, en caso de una camara de television, quién la ve, en caso de una alarma anti-intrusismo, quién la recibe

WORKSHEET#6. LOCATION AND DESCRIPTION OF SECURITY SYSTEMS

Past security incidents (attacks, sabotages, vandalism). /Incidentes	Boats through the reservoir getting to closed to the dam/Botes que se acercan a la presa Hunters/Cazadores Pedestrians entering in the dam area/Peatones que entran en el area de la presa		
Communication systems. /Sistemas de comunicación	Telephone/Teléfono Internal wireless telephone/Teléfono inalámbrico Mobile Phone/Teléfono móvil		
Distance and time from the nearest response force (police, army or similar) to the dam. /Distancia y tiempo hasta el puesto de fuerzas del estado más cercano	20 minutes/20 Minutos		
Are there operative communication protocols between the dam and the nearest response force?/Hay protocolos de comunicación operatives entre la presa y la fuerza del orden más cercana?	^{No} WORKSHEET#7.		
Do the response forces have action protocols in case of an attack event? Tienen las fuerzas del orden protocolos de actuación en la eventualidad de un ataque?	No MISCELLANEUS INFORMATION		
Potential response forces on the site (armed officers on the site). Hay fuerzas de orden en la presa	No		
Type of security surveillance provided by technical personnel on the site on the site. Qué tipo de seguridad aporta el personal propio de la presa	Permanent personnel at dam control office building Maintenance supervisor team during day time /Personal de presa permanente y supervisión durante el día		
Emergency Action Plan (Is it operative? Are there alarms in the downstream populations? Are there protocols with Civil Protection to evacuate people?). Plan de Emergencia (está operativo?) Hay alarmas para avisar a la población de aguas abajo? Hay protocolos de evacuación con protección civil?	Emergency action plan is not implemented. /El plan de emergencia no está operativo, no está implementado.		


Name: Intermed	iate Gated	Label:	CA3	Location:	Inside the dam/		
/Nombre:	-	/Etiqueta	CAS	Localización:	Dentro de la presa		
List of physical barriers. Listado de barreras fisicas	D2(S2);D15;D	D2(S2);D15;D7;E3;D3;D37;D33;D18					
	D2-100m-D15-	-700m-100r	n				
Path of the shortest							
distance to get to the	D2-500m-D7-H	Ξ3					
critical asset (estimate							
distances in meters).	D3-200m-D37-600m-D33-300m-D18-150m						
Camino más corto a los							
puntos críticos (estimar la	D1-2000m- D33-300m-D18-150m						
distancia en metros).							
	D1-1600m-D32-500M- D7-E3						
Path of most vulnerable							
way to get to the critical							
asset. (estimate distances							
in meters).	D2-500m-D7-E3						
Camino más vulnerable a							
los puntos críticos							
(estimar la distancia en							
metros).							

WORKSHEET #8. PATHS TO CRITICAL ASSETS

Outline of presentation

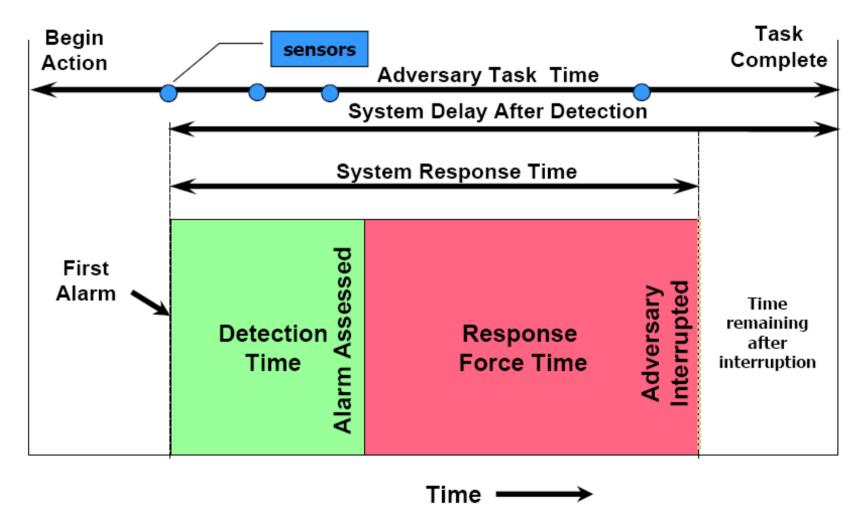
- 1. Background
- 2. Screening analysis
- 3. Planning
 - 3.1. Facility characterization
 - 3.2. Customization of Fault Tree
 - 3.3. Threat assessment
 - 3.4. Consequences assessment
 - 3.5. Preparation for site survey
- 4. Analysis
 - 4.1. Site survey
 - 4.2. System effectiveness analysis
 - 4.3. Estimation of risk
- 5. Risk management

Qualitative Security Risk Assessment

□ System Effectiveness Analysis

- It estimates the security system effectiveness (PE)
- System effectiveness (PE) and system ineffectiveness (1-PE) are complementary functions
- It indicates how well the security system protects against the threats and undesired events
- If system effectiveness is judged low, vulnerabilities will be identified and (PE) will be used to calculate the risk to the dam
- An integration of the factors (detection, delay, response) that determine the system effectiveness is needed

System Effectiveness Analysis (definitions)


- *Detection*: sensing, reporting, and assessment of an adversary action
- *Delay*: a feature that impedes the adversary to progress in a particular step of its action
- Protection system: physical security and cyber-security measures used to counter mission threats and consequences
- These physical system functions (detection, delay, and response) *must be integrated* to ensure that the adversarial threat is neutralized

System Effectiveness Analysis (definitions)

- *Path*: route taken by an adversary from off-site through areas and path elements to reach the target and, optionally, to return off-site. It's a part of a scenario
- *Scenario*: outline of events along a specific path by which the adversary plans to achieve his objective
- Most-vulnerable scenario: the adversary scenario that takes the greatest advantage of the vulnerabilities of the security system
- Vulnerabilities: weaknesses or gaps in the protection system

4. Analysis

By kind courtesy of Dr.Matalucci - RAM-D

Detection systems

	VL	L	Μ	н	VH	NA
1 All Fences		х				
VL for remote area, hardly ever visited						
L for no detection system at all						
M for random patrols						
H for detection system						
VH for 24/7 monitoring of detection system						
	VL	L	Μ	Н	VH	NA
2 All Vehicle Gates		x				
VL for remote area, hardly ever visited						
L for no detection system at all						
M for random patrols						
H for detection system						
VH for 24/7 monitoring of detection system						
	VL	L	Μ	Н	VH	NA
3 All Pedestrian doors		x				
VL for remote area, hardly ever visited						
L for no detection system at all						
M for permanent personnel on the spot						
H for detection system						
VH for 24/7 monitoring of detection system						

Delay times

TABLE 1

	Time (s)
1 Fences	120
2 Vehicle Gates	60
3 Pedestrian doors	90

TABLE 2

Mode	R	late
1 Walking	7 ft/s	2.2 m/s
2 Running	15 ft/s	4.6 m/s
3 Crawling	4 ft/s	1.2 m/s
4 Climbing (up or down)	1 ft/s	0.3 m/s
5 Driving (pick up)	54 ft/s	16.6 m/s

Response and Mitigation effectiveness

A Communication capability

VL for a very remote area with no communication systemL for no communication systemM for existance of a communication systemH for complete wireless or mobile phone coverageVH for special emergency protocol and "red button"

B Response time

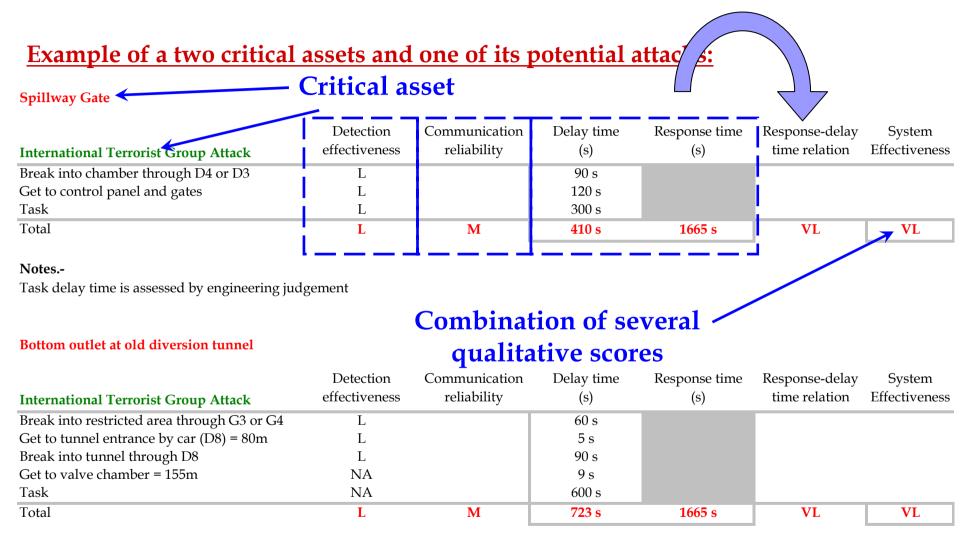
300 s	For explaining, understanding
	and making a decision
17 km	Distance to the nearest response force
80 km/h	Maximum speed limit on the road
765 s	Estimated travel time
600 s	To find the way around the dam
1665 s	Total response time

Response-Delay relations

			Result
Delay time	>	2,0 x Response time	$\mathbf{V}\mathbf{H}$
Delay time	>	1,5 x Response time	Η
1,5 x Delay time	<	Response time	L
2,0 x Delay time	<	Response time	VL
Otherwise			\mathbf{M}

This metrics is used owing to the expected length of most malicious actions that could take place at a dam. They might not last more than an hour. **Combination of several qualitative scores**

- By means of peer review sessions: expert judgment
- Some other agreed criteria:


Applying the lowest score

- □ Using verbal probability descriptors and operating:
 - Carrying out a gross average of scores
 - Strictly applying probability laws, such as the Central Limit Theorem and the Principle of Independence

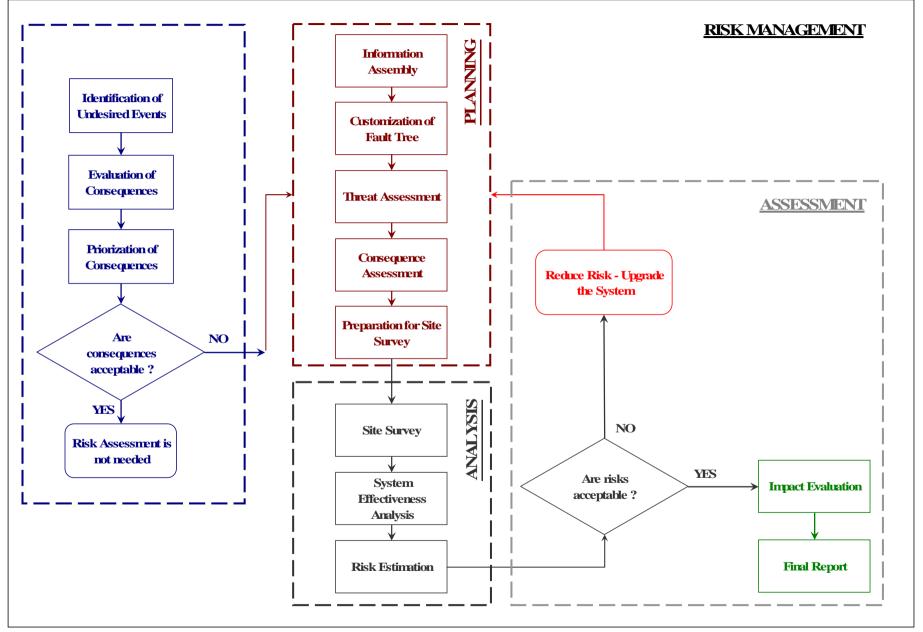
DAMSE verbal descriptors proposal

Descriptor	Description of Condition or Event	Order of Magnitude of Probability Assigned	
Very High		1	
	Occurrence is virtually certain	0,99	
		0,95	
High	Occurrence of the condition or event are observed in the available database	0,90	
		0,85	
Medium	The occurrence of the condition or event is		
	not observed, or is observed in one isolated instance, in the available database; several	0,5	
	potential failure scenarios can be identified.	0,10	
	The occurrence of the condition or event is not observed in the available database. It is		
Low	difficult to think about any plausible failure scenario; however, a single scenario could be	0,05	
	identified after considerable effort.	0,01	
Very Low	The condition or event has not been observed, and no plausible scenario could be identified, even after considerable effort.	0,001	

4. Analysis

Notes.-

Task delay time is assessed by engineering judgement


Outline of presentation

- 1. Background
- 2. Screening analysis
- 3. Planning
 - 3.1. Facility characterization
 - 3.2. Customization of Fault Tree
 - 3.3. Threat assessment
 - 3.4. Consequences assessment
 - 3.5. Preparation for site survey

4. Analysis

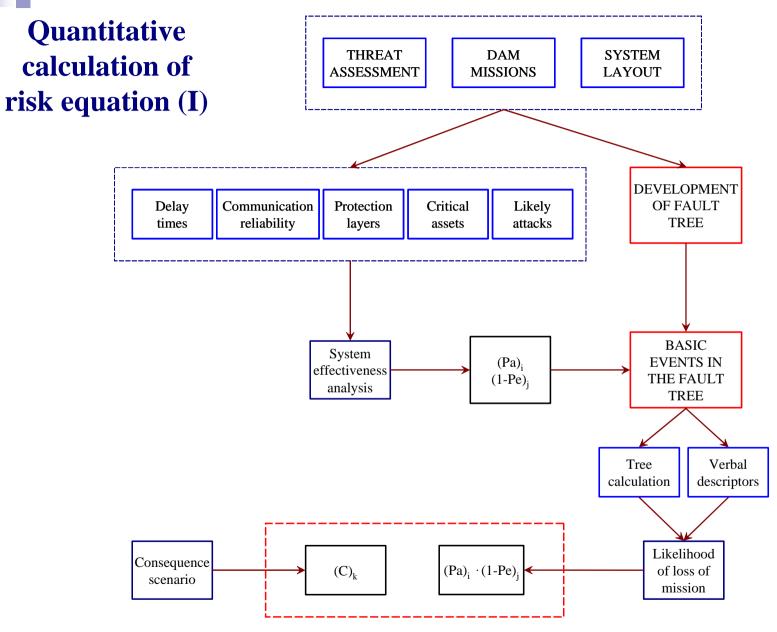
- 4.1. Site survey
- 4.2. System effectiveness analysis
- 4.3. Estimation of risk
- 5. Risk management

Qualitative Security Risk Assessment

4.3. Estimation of risk

- Some "measure" is needed to make the best decisions to manage security risk
- The security risk value obtained in DAMSE is a *qualitative* estimate of security risk
- The purpose is to provide a reference point for evaluating and comparing other security risks
- The three basic parameters are accounted for: likelihood of adversary attack, system ineffectiveness, and the consequences
- When there's not enough information to estimate attack likelihood or when consequences are extremely high, *Conditional Risk* can be used (doesn't include the initiating event and focuses on system ineffectiveness and consequences)

4. Analysis


Threat: international terrorist group

Prior to any security upgrade:

PA (1 - PE) C R

Damage or breach of gates	M	VH	L	L
Damage or breach of outlet works	Μ	VH	L	L

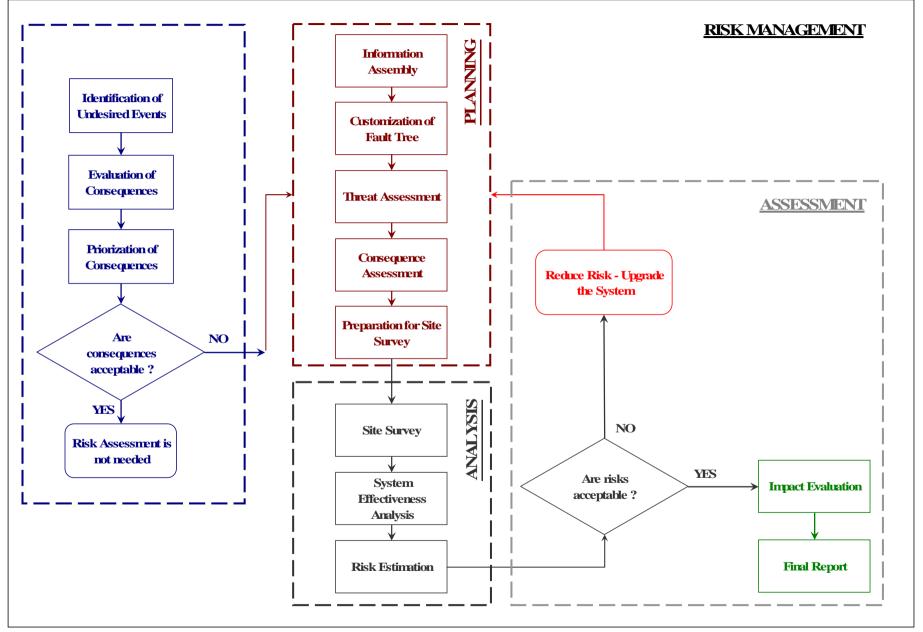
4.3. Estimation of risk

DAMSE WORKSHOP – Valencia February 26th, 2008

Quantitative calculation of risk equation (II)

- Since we use a deductive approach with the fault tree, we could have several cut sets depending on the number of basic events that we have
- Each basic event would be also linked to several "i" potential attacks and a "j" system ineffectiveness:

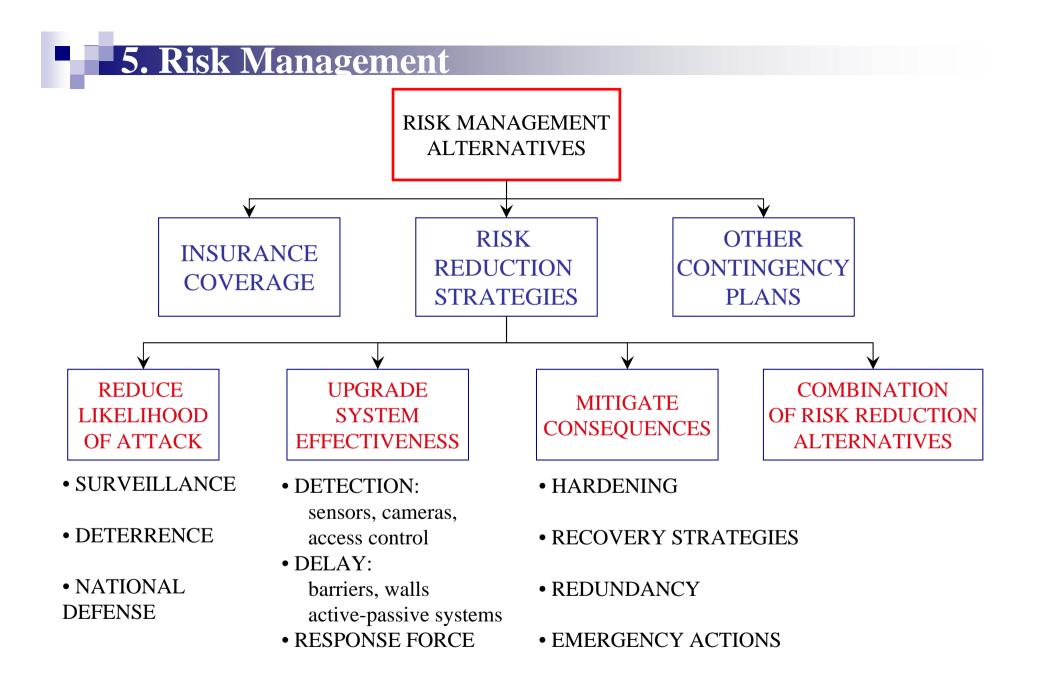
 $[(\mathbf{P}_{a})_{i} \cdot (1 - \mathbf{P}_{e})_{j}]$


Besides, we would estimate several "k" consequence scenarios

Outline of presentation

- 1. Background
- 2. Screening analysis
- 3. Planning
 - 3.1. Facility characterization
 - 3.2. Customization of Fault Tree
 - 3.3. Threat assessment
 - 3.4. Consequences assessment
 - 3.5. Preparation for site survey
- 4. Analysis
 - 4.1. Site survey
 - 4.2. System effectiveness analysis
 - 4.3. Estimation of risk

5. Risk management


Qualitative Security Risk Assessment

DAMSE WORKSHOP – Valencia February 26th, 2008

General risk management options:

- Avoid the risk (decommissioning)
- Reduce the probability of undesired events (structural measures)
- Reduce the consequences (non-structural measures)
- Transfer the risk (contractual arrangement or sale)
- Retain or accept residual risk (insurance)

5. Risk Management

General risk management options:

- Risk reduction strategies are suggested if the estimated risk level is above threshold
- Followed by re-evaluating consequences and protection system effectiveness to measure relative risk reduction
- There's a need to consider:
 - □ Risk Reduction Upgrades or Packages
 - □ Their influence on the mission of the dam
 - □ Their cost-effectiveness

Example of risk reduction measures analysis

Security upgrade implementation:

- 1. Intrusion detection system:
 - □ 24/7 monitoring video system
 - \Box Door sensors
- 2. Implementing onsite security force

5. Risk Management

Example of risk reduction measures analysis

AFTER SECURITY UPGRADE 1 (intrusion detection system)

Spillway Gate

International Terrorist Group Attack	Detection effectiveness	Communication reliability	Delay time (s)	Response time (s)	Response-delay time relation	System Effectiveness
Break into chamber through D4 or D3	VH		90 s			
Get to control panel and gates	VH		120 s			
Task	VH		300 s			
Total	VH	М	410 s	1665 s	VL	VL

Notes.-

Task delay time is assessed by engineering judgement

Bottom outlet at old diversion tunnel

International Terrorist Group Attack	Detection effectiveness	Communication reliability	Delay time (s)	Response time (s)	Response-delay time relation	System Effectiveness
Break into restricted area through G3 or G4	VH		60 s			
Get to tunnel entrance by car $(D8) = 80m$	NA		5 s			
Break into tunnel through D8	VH		90 s			
Get to valve chamber = 155m	NA		9 s			
Task	VH		600 s			
Total	VH	М	688 s	1665 s	VL	VL

Notes.-

Task delay time is assessed by engineering judgement

DAMSE WORKSHOP – Valencia February 26th, 2008

5. Risk Management Example of risk reduction measures analysis

AFTER SECURITY UPGRADE 2 (onsite response force)

Spillway Gate

International Terrorist Group Attack	Detection effectiveness	Communication reliability	Delay time (s)	Response time (s)	Response-delay time relation	System Effectiveness
*	circenveness	Tendonity	(3)	(3)		Lifectiveness
Break into chamber through D4 or D3	VH		90 s			
Get to control panel and gates	VH		120 s			
Task	VH		300 s			
Total	VH	Μ	410 s	120 s	Н	Μ

Notes.-

Task delay time is assessed by engineering judgement

Bottom outlet at old diversion tunnel

Detection effectiveness	Communication reliability	Delay time (s)	Response time (s)	Response-delay time relation	System Effectiveness
VH					
		_			
NA		9 s			
VH		600 s			
VH	Μ	688 s	120 s	Н	Μ
	effectiveness VH NA VH NA VH	effectiveness reliability VH NA VH NA VH VH	effectivenessreliability(s)VH60 sNA5 sVH90 sNA9 sVH600 s	effectivenessreliability''VH60 sNA5 sVH90 sNA9 sVH600 s	effectivenessreliability(s)1VH60 stime relationNA5 sVH90 sNA9 sVH600 s

Notes.-

Task delay time is assessed by engineering judgement

5. Risk Management

Example of risk reduction measures analysis

Prior to any security upgrade:

Threat: international terrorist group

 $PA \qquad (1 - PE) \qquad C \qquad R$

Damage or breach of spillway gates	М	VH	L	L
Damage or breach of outlet works	М	VH	L	L

After security upgrade 1: intrusion detection systems

	PA	(1 - PE)	С	R
Damage or breach of spillway gates	М	VH	VL	VL
Damage or breach of outlet works	М	VH	VL	VL

After security upgrade 2: onsite security force

 P_A $(1 - P_E)$ C R

Damage or breach of spillway gates	М	М	L	L
Damage or breach of outlet works	М	М	L	L

DAMSE METHODOLOGY Conclusions:

- Dam security should be addressed on a regular basis, in a similar way as dam safety
- Security risk is difficult to quantify, especially because predicting human behavior may never be a random event in the mathematical sense
- It's important to consider all three components of risk: likelihood of attack, system ineffectiveness, and consequences
- Collaboration between Dam Owners, Intelligence Communities, and Emergency Agencies is desirable

DAMSE METHODOLOGY Conclusions:

- The security risk value obtained in DAMSE is a *qualitative estimate* that must be checked considering all three components
- The methodology is a meaningful procedure that brings in benefits "along the way"
- It has practical implications, for it gives a systematic basis for security management decision making

THANK YOU SO MUCH!